版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知变量x,y呈现线性相关关系,回归方程为,则变量x,y是()A.线性正相关关系 B.线性负相关关系C.由回归方程无法判断其正负相关关系 D.不存在线性相关关系2.“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相间,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从大到小排列的,则不同的填法种数为()A.72 B.108 C.144 D.1963.《数学统综》有如下记载:“有凹钱,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数,在上取三个不同的点,均存在为三边长的三角形,则实数的取值范围为()A. B. C. D.4.若函数为偶函数,则()A.-1 B.1 C.-1或1 D.05.乘积可表示为()A. B. C. D.6.参数方程x=2t,A. B. C. D.7.已知函数则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是()A.[0,1) B.(-∞,1)C.(-∞,1]∪(2,+∞) D.(-∞,0]∪(1,+∞)8.若复数满足,则的虚部为()A. B. C. D.9.在圆中,弦的长为4,则()A.8 B.-8 C.4 D.-410.已知在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为()A. B. C. D.11.若函数在时取得极值,则()A. B. C. D.12.已知三棱锥的所有顶点都在球的球面上,,,若三棱锥体积的最大值为2,则球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆柱的轴截面面积为2,则其侧面积为___;14.已知函数,的最大值为,则实数的值为_______.15.已知点M抛物线上的一点,F为抛物线的焦点,点A在圆上,则的最小值________.16.如图在中,,,点是外一点,,则平面四边形面积的最大值是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,(其中为自然对数的底数,…).(1)当时,求函数的极值;(2)若函数在区间上单调递增,求的取值范围;(3)若,当时,恒成立,求实数的取值范围.18.(12分)已知函数.(Ⅰ)当时,解不等式;(Ⅱ)若,对任意都有恒成立,求实数的取值范围.19.(12分)已知函数(1)讨论的极值;(2)当时,记在区间的最大值为M,最小值为m,求.20.(12分)数列满足.(Ⅰ)计算,,,并由此猜想通项公式;(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.21.(12分)某同学参加了今年重庆市举办的数学、物理、化学三门学科竞赛的初赛,在成绩公布之前,老师估计他能进复赛的概率分别为、、,且这名同学各门学科能否进复赛相互独立.(1)求这名同学三门学科都能进复赛的概率;(2)设这名同学能进复赛的学科数为随机变量X,求X的分布列及数学期望.22.(10分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若a=2,求二面角P-AC-E的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据变量x,y的线性回归方程的系数0,判断变量x,y是线性负相关关系.【详解】根据变量x,y的线性回归方程是1﹣2x,回归系数2<0,所以变量x,y是线性负相关关系.故选:B.【点睛】本题考查了由线性回归方程判断变量是否正负相关问题,是基础题目.2、C【解析】
分步完成,5的上方和左边只能从1,2,3,4中选取,5的下方和右边只能从6,7,8,9中选取.【详解】按题意5的上方和左边只能从1,2,3,4中选取,5的下方和右边只能从6,7,8,9中选取.因此填法总数为.故选:C.【点睛】本题考查分步计数原理.解题关键是确定完成这件事的方法.3、A【解析】
由题意,三点的纵坐标中两个较小数之和小于等于2,可得m2﹣m+2≤2,即可得出结论.【详解】易知,所以,在上的最小值为.由题意可知,当,∴或,,故选A.【点睛】本题考查新定义,考查学生转化问题的能力,正确转化是关键.4、C【解析】
由f(x)为偶函数,得,化简成xlg(x2+1﹣m2x2)=0对恒成立,从而得到x2+1﹣m2x2=1,求出m=±1即可.【详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即;得对恒成立,∴x2+1﹣m2x2=1,∴(1﹣m2)x2=0,∴1﹣m2=0,∴m=±1.故选C.【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.5、A【解析】
根据对排列公式的认识,进行分析,解答即可【详解】最大数为,共有个自然数连续相乘根据排列公式可得故选【点睛】本题是一道比较基础的题型,主要考查的是排列与组合的理解,掌握排列数的公式是解题的关键6、D【解析】
由x=2t,得t=2x,代入y=2【详解】由题意知x≠0,将t=2x代入y=解得y24-x22=1,因为【点睛】本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。消参时要注意参数本身的范围,从而得出相关变量的取值范围。7、D【解析】试题分析:函数的零点就是方程的根,作出的图象,观察它与直线的交点,得知当时,或时有交点,即函数有零点.考点:函数的零点.点评:本题充分体现了数形结合的数学思想.函数的零点、方程的根、函数图像与x轴的交点,做题时注意三者之间的等价转化.8、A【解析】
利用复数的乘法法则将复数表示为一般形式,可得出复数的虚部.【详解】,因此,复数的虚部为,故选A.【点睛】本题考查复数的概念与复数的乘法运算,对于复数问题,一般是利用复数的四则运算将复数表示为一般形式,进而求解,考查计算能力,属于基础题.9、A【解析】分析:根据平面向量的数量积的定义,老鹰圆的垂径定理,即可求得答案.详解:如图所示,在圆中,过点作于,则为的中点,在中,,可得,所以,故选A.点睛:本题主要考查了平面向量的数量积的运算,其中解答中涉及到圆的性质,直角三角形中三角函数的定义和向量的数量积的公式等知识点的综合运用,着重考查了分析问题和解答问题的能力.10、A【解析】
分析:构造新函数,利用已知不等式确定的单调性,详解:设,则,由已知得,∴是减函数.∵是偶函数,∴的图象关于直线对称,∴,,的解集为,即的解集为.故选A.点睛:本题考查用导数研究函数的单调性,解题关键是是构造新函数,对于含有的已知不等式,一般要构造新函数如,,,等等,从而能利用已知条件确定的单调性,再解出题中不等式的解集.11、D【解析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.12、D【解析】分析:根据棱锥的最大高度和勾股定理计算球的半径,从而得出外接球的表面积.详解:因为,所以,过的中点作平面的垂下,则球心在上,设,球的半径为,则棱锥的高的最大值为,因为,所以,由勾股定理得,解得,所以球的表面积为,故选D.点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意得圆柱的轴截面为底边为,高为的矩形,根据几何性质即可求解。【详解】设圆柱的底面圆半径为,高为,由题意知,圆柱的轴截面为底边为,高为的矩形,所以,即。所以侧面积。【点睛】本题考查圆柱的几何性质,表面积的求法,属基础题14、【解析】
求导后,若,则,可验证出不合题意;当时,求解出的单调性,分别在,,三种情况下通过最大值取得的点构造关于最值的方程,解方程求得结果.【详解】由题意得:当时,,则在上单调递增,解得:,不合题意,舍去当时,令,解得:,可知在,上单调递减;在上单调递增①当,即时,解得:,不合题意,舍去②当,即时,,解得:③当,即时解得:,不合题意,舍去综上所述:本题正确结果:【点睛】本题考查根据函数的最值求解参数值的问题,关键是对于含有参数的函数,通过对极值点位置的讨论确定最值取得的点,从而可利用最值构造出方程,求解出参数的取值范围.15、3【解析】
由题得抛物线的准线方程为,过点作于,根据抛物线的定义将问题转化为的最小值,根据点在圆上,判断出当三点共线时,有最小值,进而求得答案.【详解】由题得抛物线的准线方程为,过点作于,又,所以,因为点在圆上,且,半径为,故当三点共线时,,所以的最小值为3.故答案为:3【点睛】本题主要考查了抛物线的标准方程与定义,与圆有关的最值问题,考查了学生的转化与化归的思想.16、.【解析】分析:利用余弦定理,设,设AC=BC=m,则.由余弦定理把m表示出来,利用四边形OACB面积为S=.转化为三角形函数问题求解最值.详解:△ABC为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m,则.由余弦定理,42+22﹣2m2=16,∴..当时取到最大值.故答案为.点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设,再建立三角函数的模型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极大值为-1,最小值为(2)(3)【解析】
(1)当时,利用函数导数,求得函数的单调区间,并求出极大值和极小值.(2)对求导后,令导数大于或等于零,对分成三类,讨论函数的单调区间,由此求得取值范围.(3)构造函数,利用导数求得函数的最小值,令这个最小值大于或等于零,解不等式来求得的取值范围.【详解】解:(1)当时,,,当或时,,函数在区间,上单调递增;当时,,函数在区间上单调递减.所以当时,取得极大值;当时,取得极小值.(2),令,依题意,函数在区间上单调递增,即在区间上恒成立.当时,显然成立;当时,在上单调递增,只须,即,所以.当时,在上单调递减,只须,即,所以.综上,的取值范围为.(3),即,令=,因为,所以只须,令,,,因为,所以,所以,即单调递增,又,即单调递增,所以,所以,又,所以.【点睛】本小题主要考查利用导数求具体函数的单调区间以及极值,考查利用导致求解参数的取值范围问题,考查利用导数求解不等式恒成立问题.综合性较强,属于难题.利用导数研究函数的性质,主要是通过导数得出函数的单调区间等性质,结合恒成立问题或者存在性问题的求解策略来解决较为复杂的问题.18、(Ⅰ)(−∞,−5)∪(1,+∞);(Ⅱ)(0,6]【解析】
(Ⅰ)由题知当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义能求出不等式的解集.
(Ⅱ)由,对任意都有,只需f(x)的最小值大于等于的最大值即可,转化成函数最值问题建立不等关系式,由此能求出a的取值范围.【详解】(Ⅰ)∵函数,∴当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义:|x+3|+|x+1|>6可以看作数轴上的点x到点−3和点−1的距离之和大于6,则点x到点−3和点−1的中点O的距离大于3即可,∴点x在−5或其左边及1或其右边,即x<−5或x>1.∴不等式的解集为(−∞,−5)∪(1,+∞).(Ⅱ)∵,对任意都有,只需f(x)的最小值大于等于的最大值即可.由可得,,设,根据二次函数性质,,∴,解得,又,∴∴a的取值范围是(0,6].【点睛】本题考查绝对值三角不等式,绝对值不等式的解法:(1)数形结合:利用绝对值不等式的几何意义[即(x,0)到(a,0)与(b,0)的距离之和]求解.(2)分类讨论:利用“零点分段法”求解.(3)构造函数:利用函数的图像求解,体现了函数与方程的思想.本题属于中等题.19、(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解析】
(1)求导函数,由导函数确定函数的单调性后可确定极值;(2)由(1)可知在区间上的单调性,从而可求得极值和最值.【详解】(1)当时,,在上单增,无极值当时,,单减区间是,单增区间是,所以,无极大值.(2)由(1)知在单减,单增当时,当时,【点睛】本题考查用导数研究函数的极值与最值.解题时可求出导函数后确定出函数的单调性,然后可确定极值、最值.20、(Ⅰ)见解析;(Ⅱ)见解析.【解析】分析:(Ⅰ)计算出,由此猜想.(Ⅱ)利用数学归纳法证明猜想.详解:(Ⅰ),由此猜想;(Ⅱ)证明:当时,,结论成立;假设(,且),结论成立,即,当(,且)时,,即,所以,这就是说,当时,结论成立,根据(1)和(2)可知对任意正整数结论都成立,即.点睛:(1)本题主要考查不完全归纳法和数学归纳法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)数学归纳法证明的关键是证明当n=k+1时命题成立,这时要利用已知和假设.21、(1);(2)见解析【解析】分析:(1),根据相互独立事件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年教育咨询服务与人才交流合同
- 2024年文化合作:艺术品投资合同范本
- 2024年技术出口与进口法律指南
- 专题16种群密度和群落物种丰富度的取样调查-2023年高考生物毕业班二轮热点题型归纳与变式演练(原卷版)
- 有关教师实习个人工作总结3000字
- 2024年工程建设合同的复杂属性描述
- DB4106T 81-2022 农产品检验检测报告编制规范
- 2024小学四年级新学期班务工作计划(3篇)
- 2024年房产按揭借款抵押合同样本
- 2024年文员创始人合同
- 镜头的角度和方位课件
- 污水处理常用药剂简介知识讲解课件
- 五年级上册英语课件-Unit 1《My future》第1课时牛津上海版(三起) (共28张PPT)
- 光交接箱施工规范方案
- 气温和降水学案
- 普及人民代表大会制度知识竞赛试题库(1000题和答案)
- 国家电网公司施工项目部标准化管理手册(2021年版)线路工程分册
- 《汽车低压线束设计规范》
- 工程项目增加签证单
- 被一部电影感动记韩国电影《鸣梁海战》观后感
- 六年级数学上册教案-《百分数》青岛版
评论
0/150
提交评论