2023届辽宁省大连市甘井子区渤海高中高二数学第二学期期末复习检测试题含解析_第1页
2023届辽宁省大连市甘井子区渤海高中高二数学第二学期期末复习检测试题含解析_第2页
2023届辽宁省大连市甘井子区渤海高中高二数学第二学期期末复习检测试题含解析_第3页
2023届辽宁省大连市甘井子区渤海高中高二数学第二学期期末复习检测试题含解析_第4页
2023届辽宁省大连市甘井子区渤海高中高二数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在区间上单调递减,则实数t的取值范围是()A. B. C. D.2.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌又会跳舞,现从中选出2名会唱歌的,1名会跳舞的,去参加文艺演出,求所有不同的选法种数为()A.18 B.15 C.16 D.253.对于实数,下列结论中正确的是()A.若,则B.若,则C.若,则D.若,,则4.若,则等于()A.9 B.8 C.7 D.65.已知某企业上半年前5个月产品广告投入与利润额统计如下:月份12345广告投入(万元)9.59.39.18.99.7利润(万元)9289898793由此所得回归方程为,若6月份广告投入10(万元)估计所获利润为()A.97万元 B.96.5万元 C.95.25万元 D.97.25万元6.已知函数,表示的曲线过原点,且在处的切线斜率均为,有以下命题:①的解析式为;②的极值点有且仅有一个;③的最大值与最小值之和等于零.其中正确的命题个数为()A.0个 B.1个 C.2个 D.3个7.已知集合,,则()A. B. C. D.8.已知为自然对数的底数,则函数的单调递增区间是()A. B. C. D.9.已知集合,,则()A. B. C. D.10.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项 B.项 C.项 D.项11.已知函数,若有且仅有两个整数,使得,则的取值范围为()A. B. C. D.12.的展开式中,各项系数的和为32,则该展开式中x的系数为()A.10 B. C.5 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知(1)正方形的对角线相等;(2)平行四边形的对角线相等;(3)正方形是平行四边形.由(1)、(2)、(3)组合成“三段论”,根据“三段论”推理出一个结论,则这个结论是________14.已知球O的半径为R,点A在东经120°和北纬60°处,同经度北纬15°处有一点B,球面上A,B两点的球面距离为___________;15.若的展开式中常数项为96,则实数等于__________.16.若的展开式中各项系数的和为,则该展开式中的常数项为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设是椭圆上的两点,已知向量,,若且椭圆的离心率,短轴长为2,为坐标原点.(1)求椭圆的方程;(2)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(3)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.18.(12分)已知函数(1)若函数在区间上为减函数,求实数的取值范围(2)当时,不等式恒成立,求实数的取值范围19.(12分)在中国绿化基金会的支持下,库布齐沙漠得到有效治理.2017年底沙漠的绿化率已达,从2018年开始,每年将出现这样的情况,上一年底沙漠面积的被栽上树改造为绿洲,而同时,上一年底绿洲面积的又被侵蚀,变为沙漠.(1)设库布齐沙漠面积为1,由绿洲面积和沙漠面积构成.2017年底绿洲面积为,经过1年绿洲面积为,经过n年绿洲面积为,试用表示;(2)问至少需要经过多少年的努力才能使库布齐沙漠的绿洲面积超过(年数取整数).20.(12分)在直角坐标系中,曲线的参数方程为(为参数).(Ⅰ)求曲线的普通方程;(Ⅱ)经过点作直线,与曲线交于两点.如果点恰好为线段的中点,求直线的方程.21.(12分)设椭圆的右焦点为,点,若(其中为坐标原点).(Ⅰ)求椭圆的方程.(Ⅱ)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.22.(10分)如图,在四棱锥中,已知平面,且四边形为直角梯形,,是中点。(1)求异面直线与所成角的大小;(2)求与平面所成角的大小。

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由函数在区间上单调递减,得到不等式在恒成立,再根据二次函数根的分布,求实数t的取值范围.【详解】因为函数在区间上单调递减,所以在恒成立,所以即解得:.【点睛】本题考查利用导数研究函数的单调性、利用二次函数根的分布求参数取值范围,考查逻辑思维能力和运算求解能力,求解时要充分利用二次函数的图象特征,把恒成立问题转化成只要研究两个端点的函数值正负问题.2、B【解析】名会唱歌的从中选出两个有种,名会跳舞的选出名有种选法,但其中一名既会唱歌又会跳舞的有一个,两组不能同时用他,共有种,故选B.3、D【解析】试题分析:对于A.若,若则故A错;对于B.若,取则是假命题;C.若,取,则是错误的,D.若,则取,又,所以,又因为同号,则考点:不等式的性质的应用4、B【解析】分析:根据组合数的计算公式,即可求解答案.详解:由题意且,,解得,故选B.点睛:本题主要考查了组合数的计算公式的应用,其中熟记组合数的计算公式是解答的关键,着重考查了推理与计算能力.5、C【解析】

首先求出的平均数,将样本中心点代入回归方程中求出的值,然后写出回归方程,然后将代入求解即可【详解】代入到回归方程为,解得将代入,解得故选【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。6、C【解析】

首先利用导数的几何意义及函数过原点,列方程组求出的解析式,则命题①得到判断;然后令,求出的极值点,进而求得的最值,则命题②③得出判断.【详解】∵函数的图象过原点,∴.又,且在处的切线斜率均为,∴,解得,∴.所以①正确.又由得,所以②不正确.可得在上单调递增,在上单调递减,在上单调递增,∴的极大值为,极小值为,又,∴,∴的最大值与最小值之和等于零.所以③正确.综上可得①③正确.故选C.【点睛】本题考查导数的几何意义的应用以及函数的极值、最值的求法,考查运算能力和应用能力,属于综合问题,解答时需注意各类问题的解法,根据相应问题的解法求解即可.7、D【解析】分析:先化简集合P,Q,再求.详解:由题得,,所以.故答案为:D.点睛:本题主要考查集合的化简与交集运算,意在考查学生对这些知识的掌握水平,属于基础题.8、A【解析】因,故当时,函数单调递增,应选答案A。9、B【解析】

可求出集合B,然后进行交集的运算即可.【详解】B={x|x≤2};∴A∩B={1,2}.故选:B.【点睛】本题考查描述法、列举法表示集合的定义,以及交集的运算.10、D【解析】

分别写出、时,不等式左边的式子,从而可得结果.【详解】当时,不等式左边为,当时,不等式左边为,则增加了项,故选D.【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.11、B【解析】分析:数,若有且仅有两个整数,使得,等价于有两个整数解,构造函数,利用导数判断函数的极值点在,由零点存在定理,列不等式组,从而可得结果..详解:因为所以函数,若有且仅有两个整数,使得,等价于有两个整数解,设,令,令恒成立,单调递减,又,存在,使递增,递减,若解集中的整数恰为个,则是解集中的个整数,故只需,故选B.点睛:本题主要考查不等式有解问题以及方程根的个数问题,属于难题.不等式有解问题不能只局限于判别式是否为正,不但可以利用一元二次方程根的分布解题,还可以转化为有解(即可)或转化为有解(即可),另外,也可以结合零点存在定理,列不等式(组)求解.12、A【解析】

令得各项系数和,求得,再由二项式定理求得展开式中x的系数.【详解】令得,,二项式为,展开式通项为,令,,所以的系数为.故选:A.【点睛】本题考查二项式定理,考查二项展开式中各项系数的和.掌握二项式定理是解题关键.赋值法是求二项展开式中各项系数和的常用方法.二、填空题:本题共4小题,每小题5分,共20分。13、正方形的对角线相等【解析】分析:三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理.在三段论中,含有大项的前提叫大前提,如本例中“平行四边形的对角线相等”,含有小项的前提叫小前提,如本例中的“正方形是平行四边形”,另外一个就是结论.详解:由演绎推理三段论可得,本例中的“平行四边形的对角线相等”是大前提,本例中的“正方形是平行四边形”是小前提,则结论为“正方形的对角线相等”,所以答案是:正方形的对角线相等.点睛:该题考查的是有关演绎推理的概念问题,要明确三段论中三段之间的关系,分析得到大前提、小前提以及结论是谁,从而得到结果.14、;【解析】

根据纬度差可确定,根据扇形弧长公式可求得所求距离.【详解】在北纬,在北纬,且均位于东经两点的球面距离为:本题正确结果:【点睛】本题考查球面距离的求解问题,关键是能够通过纬度确定扇形圆心角的大小,属于基础题.15、【解析】的展开式的通项是,令,的展开式中常数项为可得故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16、120【解析】分析:的展开式中各项系数的和为,令,求出a,再求出展开式中x的一次项及项即可.详解:的展开式中,各项系数的和为,令,,,的展开式中的系数为,的系数为,展开式中的常数项为.故答案为:120.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)三角形的面积为定值1.【解析】试题分析:(1)根据条件可得,再设直线的方程为:,与椭圆联立方程组,利用韦达定理和已知条件,即可求出的值;(2)先考虑直线斜率不存在的情况,即,,根据,求得和的关系式,代入椭圆的方程求得点的横坐标和纵坐标的绝对值,进而求得△AOB的面积的值;当直线斜率存在时,设出直线的方程,与椭圆联立方程组,利用韦达定理表示出和,再利用,弦长公式及三角形面积公式求得答案.试题解析:(1)由题可得:,,所以,椭圆的方程为设的方程为:,代入得:∴,,∵,∴,即:即,解得:(2)①直线斜率不存在时,即,∵∴,即又∵点在椭圆上∴,即∴,∴,故的面积为定值1②当直线斜率存在时,设的方程为,联立得:∴,,∴所以三角形的面积为定值1.点睛:本题主要考查直线与圆锥曲线的位置关系、圆锥曲线的定值问题,解题时要注意解题技巧的运用,如常用的设而不求,整体代换的方法;探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个这个值与变量无关;②直接推理、计算,借助韦达定理,结合向量所提供的坐标关系,然后经过计算推理过程中消去变量,从而得到定值.18、(1)(2)【解析】试题分析:(1)由函数求出导数,由区间上为减函数得到恒成立,通过分离参数,求函数最值得到的范围(2)将不等式恒成立转化为求函数最值问题,首先通过函数导数得到单调区间,进而求出最值,在求单调区间时注意对参数分情况讨论试题解析:(1)因为函数在区间上为减函数,所以对恒成立即对恒成立(2)因为当时,不等式恒成立,即恒成立,设,只需即可由①当时,,当时,,函数在上单调递减,故成立②当时,令,因为,所以解得1)当,即时,在区间上,则函数在上单调递增,故在上无最大值,不合题设.2)当时,即时,在区间上;在区间上.函数在上单调递减,在区间单调递增,同样在无最大值,不满足条件.③当时,由,故,,故函数在上单调递减,故成立综上所述,实数的取值范围是考点:1.不等式与函数的转化;2.利用导数求函数的单调性最值19、(1)(2)至少需要经过5年的努力.【解析】

(1)根据变化规律确定与关系;(2)先根据递推关系构造一个等比数列,再求得,最后解不等式得结果.【详解】(1)第n+1年绿洲面积由上一年即第n年绿洲面积、增加上一年底沙漠面积的以及减少上一年底绿洲面积的这三部分构成,即(2)所以数列构成以为首项,为公比的等比数列,因此由得因此至少需要经过年的努力才能使库布齐沙漠的绿洲面积超过【点睛】本题考查数列递推关系式、等比数列定义以及解指数不等式,考查综合分析求解能力,属中档题.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用求曲线的普通方程;(Ⅱ)经过点的直线的参数方程为(为参数),代入曲线中,可得,利用韦达定理求出,结合参数的几何意义得,计算整理即可得到直线的斜率,进而通过点斜式求出直线方程。【详解】(Ⅰ)由,且,所以的普通方程为.(Ⅱ)设直线的倾斜角为,则经过点的直线的参数方程为(为参数),代入曲线中,可得.由的几何意义知.因为点在椭圆内,这个方程必有两个实根,所以.由是中点,所以,即,解得所以直线的斜率为,所直线的方程是,即.【点睛】本题考查参数方程与普通方程的互化,直线的参数方程,解题的一般思路是求出直线的参数方程代入圆锥曲线的普通方程,结合题意通过韦达定理解答。21、(Ⅰ)(Ⅱ)的最大值为.【解析】试题分析:(Ⅰ)结合题意可得所以,由可解得,故得椭圆方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论