




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为,且,当时,;当时,,则A.672 B.673 C.1345 D.13462.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为A.1 B.2 C.3 D.43.如图所示,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则()A.r1=r2 B.r1<r2 C.r1>r2 D.无法判定4.已知样本数据点集合为,样本中心点为,且其回归直线方程为,则当时,的估计值为()A. B. C. D.5.设A,B,C是三个事件,给出下列四个事件:(Ⅰ)A,B,C中至少有一个发生;(Ⅱ)A,B,C中最多有一个发生;(Ⅲ)A,B,C中至少有两个发生;(Ⅳ)A,B,C最多有两个发生;其中相互为对立事件的是()A.Ⅰ和Ⅱ B.Ⅱ和Ⅲ C.Ⅲ和Ⅳ D.Ⅳ和Ⅰ6.高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是()A. B. C. D.7.已知集合则=()A. B. C. D.8.由曲线,直线及轴所围成的平面图形的面积为()A.6 B.4 C. D.9.下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个10.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派议程种数是()A.70 B.140 C.420 D.84011.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.12.如图是某陀螺模型的三视图,则该陀螺模型的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则_________.14.设实数x,y满足,则的最小值为___________.15.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是__________16.某种产品每箱装6个,其中有4个合格,2个不合格,现质检人员从中随机抽取2个进行检测,则检测出至少有一个不合格产品的概率是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率,(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;(Ⅱ)求甲恰好比乙多击中目标次的概率.18.(12分)已知函数,.(Ⅰ)当时,证明:;(Ⅱ)的图象与的图象是否存在公切线(公切线:同时与两条曲线相切的直线)?如果存在,有几条公切线,请证明你的结论.19.(12分)已知实数满足,其中实数满足.(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.20.(12分)在直角坐标系中,直线的参数方程为(为参数,),以原点O为极点,轴的正半轴为极轴,建立极坐标系.曲线C的极坐标方程为:.(1)求曲线C的直角坐标方程;(2)时,设直线与曲线C相交于A,B两点,,求.21.(12分)如图,是圆柱的底面直径且,是圆柱的母线且,点是圆柱底面面圆周上的点.(1)求证:平面;(2)当三棱锥体积最大时,求二面角的大小;(结果用反三角函数值表示)(3)若,是的中点,点在线段上,求的最小值.22.(10分)已知函数,其中为常数.(1)若,求函数的极值;(2)若函数在上单调递增,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据函数周期的定义,得到函数是周期为3的周期函数,进而求得的值,进而得到,即可求解.【详解】根据题意,函数的定义域为,且,则函数是周期为3的周期函数,又由当时,,则,当时,,则,由函数是周期为3的周期函数,则则,所以,故选D.【点睛】本题主要考查了函数周期性的应用,以及函数值的计算,其中解答中根据函数周期性的定义,求得函数是周期为3的周期函数是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】∵a1+a5=10,a4=7,∴2a1+3、C【解析】
利用“散点图越接近某一条直线线性相关性越强,相关系数的绝对值越大”判断即可.【详解】根据两组样本数据的散点图知,组样本数据几乎在一条直线上,且成正相关,∴相关系数为应最接近1,组数据分散在一条直线附近,也成正相关,∴相关系数为,满足,即,故选C.【点睛】本题主要考查散点图与线性相关的的关系,属于中档题.判断线性相关的主要方法:(1)散点图(越接近直线,相关性越强);(2)相关系数(绝对值越大,相关性越强).4、D【解析】
根据线性回归直线过样本中心点,可得,然后代值计算,可得结果.【详解】由题可知:所以回归直线方程为当当时,故选:D【点睛】本题考查线性回归方程,掌握回归系数的求法以及回归直线必过样本中心点,属基础题.5、B【解析】
利用互斥事件、对立事件的定义直接求解.【详解】解:,,是三个事件,给出下列四个事件:(Ⅰ),,中至少有一个发生;(Ⅱ),,中最多有一个发生;(Ⅲ),,中至少有两个发生(Ⅳ),,最多有两个发生;在中,Ⅰ和Ⅱ能同时发生,不是互斥事件,故中的两个事件不能相互为对立事件;在中,Ⅱ和Ⅲ既不能同时发生,也不能同时不发生,故中的两个事件相互为对立事件;在中,Ⅲ和Ⅳ能同时发生,不是互斥事件,故中的两个事件不能相互为对立事件;在中,Ⅳ和Ⅰ能同时发生,不是互斥事件,故中的两个事件不能相互为对立事件.故选:.【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.6、B【解析】
根据所给的条件求出男生数和男生中三好学生数,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,根据概率公式得到结果.【详解】因为高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,所以本班有40名男生,男生中有5名三好学生,由题意知,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,所以没有选上女生的条件下,选上的是三好学生的概率是,故选B.【点睛】该题考查的是有关古典概型的概率求解问题,在解题的过程中,需要首先求得本班的男生数和男生中的三好学生数,根据古典概型的概率公式求得结果.7、D【解析】因为集合B中,x∈A,所以当x=1时,y=3-2=1;当x=2时,y=3×2-2=4;当x=3时,y=3×3-2=7;当x=4时,y=3×4-2=10.即B={1,4,7,10}.又因为A={1,2,3,4},所以A∩B={1,4}.故选D.8、D【解析】
先求可积区间,再根据定积分求面积.【详解】由,得交点为,所以所求面积为,选D.【点睛】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题.9、C【解析】
通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【点睛】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像来判断。10、C【解析】
试题分析:先分组:“个男个女”或“个女个男”,第一种方法数有,第二种方法数有.然后派到西部不同的地区,方法数有种.考点:排列组合.11、D【解析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.12、C【解析】
几何体上部分为圆柱,下部分为圆锥,代入体积公式计算即可.【详解】解:几何体上部分为圆柱,下部分为圆锥,
其中圆柱的底面半径为1,高为2,圆锥的底面半径为1,高为1,所以几何体的体积.
故选:C.【点睛】本题考查了常见几何体的三视图与体积的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】
根据数列递推关系,列出前面几项,发现数列是以6为周期的周期数列,然后根据周期数列的性质特点可得出的值.【详解】由题干中递推公式,可得:,,,,,,,,,数列是以6为最小正周期的周期数列.,.故答案为:.【点睛】本题主要考查周期数列的判定及利用周期数列的性质特点求数列任一项的值,考查不完全归纳法的应用,考查从特殊到一般的思想和基本的运算求解能力.14、【解析】
由题意画出可行域,令,转化目标函数为,数形结合即可得解.【详解】由题意画出可行域,如图,令,则,数形结合可知,当直线过点A时,取最小值,由可得点,所以.故答案为:.【点睛】本题考查了简单的线性规划,属于基础题.15、【解析】
利用点到直线的距离公式计算出焦点到渐近线的距离,然后根据对应距离等于焦距的求解出的值,即可得到双曲线的渐近线方程.【详解】因为焦点到渐近线的距离,所以,所以,所以,所以渐近线方程为:.故答案为:.【点睛】本题考查双曲线渐近线方程的求解,难度一般.双曲线的焦点到渐近线的距离等于虚轴长度的一半.16、【解析】
首先明确试验发生包含的事件是从6个产品中抽2个,共有种结果,满足条件的事件是检测出至少有一个不合格产品,共有种结果,根据古典概型概率公式得到结果.【详解】由题意知本题是一个等可能事件的概率,因为试验发生包含的事件是6个产品中抽取2个,共有种结果,满足条件的事件是检测出至少有一个不合格产品,共有种结果,所以检测出至少有一个不合格产品的概率是,故答案是:.【点睛】该题考查的是有关等可能事件的概率的求解问题,在解题的过程中,注意对试验所包含的基本事件数以及满足条件的基本事件数,以及概率公式,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列(见解析),Eξ=1.5;(2).【解析】
试题分析:(1)因甲每次是否击中目标相互独立,所以ξ服从二项分布,即,由期望或(二项分布);(2)甲恰好比乙多击中目标2次:分为2类,甲3次乙1次,甲2次乙0次.甲乙相互独立概率相乘.试题解析:甲射击三次其集中次数ξ服从二项分布:(1)P(ξ=0)=,P(ξ=1)=P(ξ=2)=,P(ξ=3)=ξ
0
1
2
3
P
ξ的概率分布如下表:Eξ=,(2)甲恰好比乙多击中目标2次:分为2类,甲3次乙1次,甲2次乙0次.甲乙相互独立概率相乘..考点:(1)二项分布及其概率计算;(2)独立事件概率计算.18、(Ⅰ)见解析(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2条,证明见解析【解析】
(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,设l(x)=f(x)﹣x=ex﹣x,分别求得导数和单调性、最值,即可得证;(Ⅱ)先确定曲线y=f(x),y=g(x)公切线的条数,设出切点坐标并求出两个函数导数,根据导数的几何意义列出方程组,先化简方程得lnm﹣1.分别作出y=lnx﹣1和y的函数图象,通过图象的交点个数来判断方程的解的个数,即可得到所求结论.【详解】(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,h′(x)1,当x>1时,h′(x)<0,h(x)递减;0<x<1时,h′(x)>0,h(x)递增;可得h(x)在x=1处取得最大值﹣1,可得h(x)≤﹣1<0;设l(x)=f(x)﹣x=ex﹣x,l′(x)=ex﹣1,当x>0时,l′(x)>0,l(x)递增;可得l(x)>l(0)=1>0,综上可得当x>0时,g(x)<x<f(x);(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2,证明如下:设公切线与g(x)=lnx,f(x)=ex的切点分别为(m,lnm),(n,en),m≠n,∵g′(x),f′(x)=ex,可得,化简得(m﹣1)lnm=m+1,当m=1时,(m﹣1)lnm=m+1不成立;当m≠1时,(m﹣1)lnm=m+1化为lnm,由lnx1,即lnx﹣1.分别作出y=lnx﹣1和y的函数图象,由图象可知:y=lnx﹣1和y的函数图象有两个交点,可得方程lnm有两个实根,则曲线y=f(x),y=g(x)公切线的条数是2条.【点睛】本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查方程与构造函数法和数形结合思想,考查化简运算能力,属于较难题.19、(1);(2)【解析】
试题分析:(Ⅰ)解不等式可得,可求得时命题中的范围,若为真则说明命题均为真,应将命题中的范围取交集.(Ⅱ)若是的充分不必要条件,则命题的取值的集合是命题的取值集合的真子集.试题解析:解:(Ⅰ):,时,,:为真,(Ⅱ)若是的充分不必要条件,则∴解得.考点:1命题;2充分必要条件.20、(1)(2)【解析】
(1)利用公式化简即可(2)联立方程,利用参数t的几何意义求解。【详解】(1)由得∴曲线与直线的方程为:.(2)把代入得∴∴.【点睛】本题考查极坐标与参数方程,熟记参数方程与一般方程相互转换的公式,属于基础题。21、(1)详见解析;(2);(3).【解析】
(1)根据圆柱性质可得,由圆的性质可得,即可证明平面;(2)先判断当三棱锥体积最大时的位置.过底面圆心作,即可得二面角的平面角为,根据所给线段关系解三角形即可求得,进而用反三角函数表示出即可.(3)将绕旋转到使其共面,且在的反向延长线上,结合余弦定理即可求得的最小值,也
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市建筑材料寄存与环保检测服务协议范本2025
- 2025年北京市外贸企业员工劳动合同参考范本
- 物联网在智慧农业中的前景展望
- 科普手术操作流程
- 电子产品物流司机用工合同
- 2025年度办公室租赁及企业财务咨询服务协议
- 二零二五年度互联网企业员工劳动合同范本
- 肾衰竭护理查房
- 校园卫生咱维护劳动教育
- 林地使用权转让合同模板
- 湖南省炎德英才名校联考联合体2024-2025学年高二下学期3月月考-数学+答案
- (3月省质检)福建省2025届高三毕业班适应性练习卷英语试卷(含答案)
- 专业网格员测试题及答案
- 2025年上半年贵州黔东南州各县(市)事业单位招聘工作人员1691人笔试易考易错模拟试题(共500题)试卷后附参考答案
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 2023年广东省中学生生物学联赛试题解析(word)及答案(扫描版)
- 浙美版六年级下册美术全册教案
- 《云南省食品安全地方标准 天麻》编制说明
- 基于语音信号去噪处理的FIR低通滤波器设计要点
- G414(五) 预应力钢筋混凝土工字形屋面梁
- 木箱制作作业指导书
评论
0/150
提交评论