




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列0,,,,…的一个通项公式是()A. B.C. D.2.函数在区间上的最大值是()A. B. C. D.3.已知命题,总有,则为()A.使得 B.使得C.总有 D.,总有4.设,若函数,有大于零的极值点,则()A. B. C. D.5.若函数f(x)的导函数的图像关于原点对称,则函数f(x)的解析式可能是()A.f(x)=3cosx B.f(x)=x36.给出下列命题:①命题“若,则方程无实根”的否命题;②命题“在中,,那么为等边三角形”的逆命题;③命题“若,则”的逆否命题;④“若,则的解集为”的逆命题;其中真命题的序号为()A.①②③④ B.①②④ C.②④ D.①②③7.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第20行从右往左数第1个数是()A.397 B.398 C.399 D.4008.将函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得图象上所有的点向左平移个单位长度,则所得图象对应的函数解析式为()A. B.C. D.9.已知直线倾斜角是,在轴上截距是,则直线的参数方程可以是()A. B. C. D.10.设,则的值为()A.-7 B. C.2 D.711.已知椭圆方程为x24+y225=1,将此椭圆绕y轴旋转一周所得的旋转体的体积为V1,满足y≥-5A.V2=C.V2=54V12.某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.根据所示的伪代码,若输入的的值为-1,则输出的结果为________.14.已知为抛物线:的焦点,过且斜率为的直线交于,两点,设,则_______.15.随机变量X的分布列是123P0.40.20.4则EX,DX分别是________16.已知函数,若的所有零点之和为1,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,命題对任意,不等式恒成立;命题存在,使得成立.(1)若为真命题,求的取值范围;(2)若为假,为真,求的取值范围.18.(12分)某小区所有263户家庭人口数分组表示如下:家庭人口数12345678910家庭数20294850463619843(1)若将上述家庭人口数的263个数据分布记作,平均值记作,写出人口数方差的计算公式(只要计算公式,不必计算结果);(2)写出他们家庭人口数的中位数(直接给出结果即可);(3)计算家庭人口数的平均数与标准差.(写出公式,再利用计算器计算,精确到0.01)19.(12分)为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,到如图所示的频率分布直方图.(1)求图中的值及样本的中位数与众数;(2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.(3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖,得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.20.(12分)已知x,y,z是正实数,且满足.(1)求的最小值;(2)求证:21.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示,支持“延迟退休年龄政策”的人数与年龄的统计结果如表:年龄(岁)支持“延迟退休年龄政策”人数155152817(I)由以上统计数据填写下面的列联表;年龄低于45岁的人数年龄不低于45岁的人数总计支持不支持总计(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.0.1000.0500.0100.0012.7063.8416.63510.828参考公式:22.(10分)在四棱锥中,侧面底面ABCD,底面ABCD为直角梯形,,,,,E,F分别为AD,PC的中点.Ⅰ求证:平面BEF;Ⅱ若,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】在四个选项中代n=2,选项B,D是正数,不符,A选项值为,符合,C选项值为,不符.所以选A.【点睛】对于选择题的选项是关于n的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项.2、B【解析】
函数,,令,解得x.利用三角函数的单调性及其导数即可得出函数的单调性.【详解】函数,,令,解得.∴函数在内单调递增,在内单调递减.∴时函数取得极大值即最大值..故选B.【点睛】本题考查了三角函数的单调性,考查利用导数研究函数的单调性极值与最值、考查了推理能力与计算能力,属于中档题.求三角函数的最值问题,一般是通过两角和差的正余弦公式将函数表达式化为一次一角一函数,或者化为熟悉的二次函数形式的复合函数来解决.3、B【解析】
利用全称命题的否定解答即得解.【详解】根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)≤1,故选:B.【点睛】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平.4、B【解析】试题分析:设,则,若函数在x∈R上有大于零的极值点.即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B.考点:利用导数研究函数的极值.5、A【解析】
求出导函数,导函数为奇函数的符合题意.【详解】A中f'(x)=-3sinx为奇函数,B中f'(x)=3x2+2x非奇非偶函数,C中f'(x)=2故选A.【点睛】本题考查导数的运算,考查函数的奇偶性.解题关键是掌握奇函数的图象关于原点对称这个性质.6、A【解析】
①写出其否命题,再判断真假;②写出其逆命题,再判断真假;③根据原命题与逆否命题真假性相同,直接判断原命题的真假即可;④写出其逆命题,再判断真假.【详解】①命题“若,则方程无实根”的否命题为:“若,则方程有实根”,为真命题,所以正确.②命题“在中,,那么为等边三角形”的逆命题为:“若为等边三角形,则”为真命题,所以正确.③命题“若,则”为真命题,根据原命题与逆否命题真假性相同,所以正确.④“若,则的解集为”的逆命题为:“若的解集为,则”当时,不是恒成立的.当时,则解得:,所以正确.故选:A【点睛】本题考查四种命题和互化和真假的判断,属于基础题.7、D【解析】
根据图中数字排列规律可知,第行共有项,且最后一项为,从而可推出第20行最后1个数的值,即可求解出答案.【详解】由三角形数组可推断出,第行共有项,且最后一项为,所以第20行,最后一项为1.故答案选D.【点睛】本题主要考查归纳推理的能力,归纳推理是由特殊到一般,由具体到抽象的一种推理形式,解题时,要多观察实验,对有限的资料进行归纳整理,提出带有规律性的猜想.8、D【解析】
由正弦函数的周期变换以及平移变换即可得出正确答案.【详解】函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变)得到,再将所得图象上所有的点向左平移个单位长度,得到故选:D【点睛】本题主要考查了正弦函数的周期变换以及平移变换,属于中档题.9、D【解析】
由倾斜角求得斜率,由斜截式得直线方程,再将四个选项中的参数方程化为普通方程,比较可得答案.【详解】因为直线倾斜角是,所以直线的斜率,所以直线的斜截式方程为:,由消去得,故不正确;由消去得,故不正确;由消去得,故不正确;由消去得,故正确;故选:D.【点睛】本题考查了直线方程的斜截式,参数方程化普通方程,属于基础题.10、D【解析】
利用赋值法,令即可确定的值.【详解】题中所给等式中,令可得:,即,令可得:,即,据此可知:的值为.本题选择D选项.【点睛】本题主要考查赋值法及其应用,意在考查学生的转化能力和计算求解能力.11、C【解析】
根据题意画出图形,分别求出椭圆绕y轴旋转一周所得的旋转体的体积为V1与满足y≥-50≤x≤2y≤52【详解】在同一平面直角坐标系中画出椭圆与旋转体如图,椭圆绕y轴旋转一周所得的旋转体为椭球,其体积为V1满足y≥-50≤x≤2y≤5其体积V2=π×2故选:C.【点睛】本题主要考查了旋转体的体积及学生的计算能力,属于中档题.12、C【解析】分析:先写出的取值,再分别求的概率,最后求的数学期望.详解:由题得所以故答案为:C点睛:(1)本题主要考查离散型随机变量的分布列和数学期望,意在考查学生对这些基础知识的掌握能力.(2)离散型随机变量的数学期望二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
通过读条件语句,该程序是分段函数,代入即可得到答案.【详解】根据伪代码,可知,当时,,故答案为.【点睛】本题主要考查条件程序框图的理解,难度不大.14、【解析】
直接写出直线方程,与抛物线方程联立方程组解得交点的横坐标,再由焦半径公式得出,求比值即得。【详解】联立,可得,解得,所以,故答案为:。【点睛】本题考查直线与抛物线相交问题,考查焦半径公式。解题方法是直接法,即解方程组得交点坐标。15、2,0.1【解析】
于已知分布列,故可直接使用公式求期望、方差.【详解】Eξ=1×0.4+2×0.2+3×0.4=2,Dξ=(1﹣2)2×0.4+(2﹣2)2×0.2+(3﹣2)2×0.4=0.1.故答案为:2,0.1.【点睛】本题主要考查离散型随机变量的分布和数学期望、方差等基础知识,熟记期望、方差的公式是解题的关键.16、【解析】
先根据分段函数的形式确定出时的零点为,再根据时函数解析式的特点和导数的符号确定出图象的“局部对称性”以及单调性,结合所有零点的和为1可得,从而得到参数的取值范围.【详解】当时,易得的零点为,当时,,∵当时,,∴的图象在上关于直线对称.又,当时,,故单调递增,当时,,故单调递减,且,.因为的所有零点之和为1,故在内有两个不同的零点,且,解得.故实数a的取值范围为.故答案为:.【点睛】本题考查分段函数的零点,已知函数零点的个数求参数的取值范围时,应根据解析式的特点和导数寻找函数图象的对称性和函数的单调性,最后根据零点的个数得到特殊点处函数的符号,本题属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由题得,解不等式即得解;(2)先由题得,由题得,中一个是真命题,一个是假命题,列出不等式组,解不等式组得解.【详解】(1)对任意,不等式恒成立,当,由对数函数的性质可知当时,的最小值为,,解得.因此,若为真命题时,的取值范围是.(2)存在,使得成立,.命题为真时,,且为假,或为真,,中一个是真命题,一个是假命题.当真假时,则解得;当假真时,,即.综上所述,的取值范围为.【点睛】本题主要考查指数对数函数的性质和不等式的恒成立问题的解法,考查复合命题的真假和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2);(3)平均数4.30人,方差【解析】
(1)根据方差的计算公式可得结果;(2)根据中位数的概念可得结果;(3)根据平均数与标准差的公式计算即可.【详解】解:(1)由方差的计算公式得:人口数方差为;(2)263户家庭,则中位数为第户家庭的人口数,,,所以中位数为4;(3)平均数:,标准差:【点睛】本题考查平均数,标准差,中位数的计算,是基础题.19、(1)0.06;87.5;87.5;(2);(3)详见解析【解析】
(1)根据小矩形的面积之和等于1,列出方程,求得的值,根据中位数定义估计中位数的范围,在列出方程求解中位数,再根据众数的定义,即可求解.(2)计算两组的人数,再计算抽取的两人在同一组的概率,即可求解;(3)根据题意,得到随机变量服从二项分布,再利用二项分布的期望公式,即可求解.【详解】(1)由频率分布直方图可知,解得,可知样本的中位数在第4组中,不妨设为,则,解得,即样本的中位数为,由频率分布直方图可知,样本的众数为.(2)由频率分布直方图可知,在与两个分数段的学生人数分别为和,设中两名学生的竞赛成绩之差的绝对值不大于5分为事件M,则事件M发生的概率为,即事件M发生的概率为.(3)从考生中随机抽取三名,则随机变量为获得三等奖的人数,则,由频率分布直方图知,从考升中任抽取1人,此生获得三等奖的概率为,所以随机变量服从二项分布,则,,所以随机变量的分布列为01230.3430.4410.1890.027所以.【点睛】本题主要考查了频率分布直方图的应用,以及随机变量的分布列及其数学期望的求解,其中解答中认真审题,熟练频率分布直方图的性质,正确确定随机变量的取值,求得相应的概率,得出随机变量的分布列是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)见解析(2)见解析【解析】分析:(1)利用“乘1法”,根据基本不等式可求的最小值;(2)由柯西不等式即可得证.详解:(1)∵x,y,z是正实数,且满足x+2y+3z=1,∴++=(x+2y+3z)=6++++++≥6+2+2+2,当且仅当=且=且=时取等号.(2)由柯西不等式可得1=(x+2y+3z)2≤(x2+y2+z2)(12+22+32)=14(x2+y2+z2),∴x2+y2+z2≥,当且仅当x==,即x=,y=,z=时取等号.故x2+y2+z2≥点睛:本题考查基本不等式及柯西不等式,属基础题.21、(I)列联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《2025合同协议书范本填写》
- 私人对公借款合同范本
- 2025车辆质押合同书
- 鲜花送货合同范本
- 西藏阿里地区2024-2025学年小升初必考题数学检测卷含解析
- 泉州信息工程学院《数据结构与算法分析实验》2023-2024学年第一学期期末试卷
- 天津天狮学院《英语阅读与思辨》2023-2024学年第一学期期末试卷
- 上海电力大学《管理经济学(双语)》2023-2024学年第二学期期末试卷
- 2025年安徽省亳州市第二中学高三第二学期期末质量抽测物理试题试卷含解析
- 石家庄经济职业学院《工程质量事故分析与加固》2023-2024学年第二学期期末试卷
- 河南省洛阳市2023-2024学年高二下学期4月期中考试数学试题(含答案)
- 高考作文标准方格纸-A4-可直接打印
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 毛泽东诗词鉴赏
- (高清版)DZT 0426-2023 固体矿产地质调查规范(1:50000)
- 毕业设计(论文)-某住宅2#楼电气系统设计
- 水闸工程现状调查分析报告
- 基于单片机的电子广告牌设计
- 猫之书:100种猫咪行为解读猫主子的真心话
- 吊篮后支架加高5米施工方案
- Mysql 8.0 OCP 1Z0-908 CN-total认证备考题库(含答案)
评论
0/150
提交评论