




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,若,则()A.1 B. C. D.-12.已知-1,a,b,-5成等差数列,-1,c,-4成等比数列,则a+b+c=()A.-8 B.-6 C.-6或-4 D.-8或-43.在(x+1x2A.-32 B.-8 C.8 D.484.已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.5.设函数,若是函数的极大值点,则实数的取值范围是()A. B. C. D.6.已知集合,集合,则A. B. C. D.7.在三棱锥中,,,,则三棱锥外接球的表面积为()A. B. C. D.8.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为()附:若X∼N(μ,σ2),则PA.1193 B.1359 C.2718 D.34139.一个空间几何体的三规图如图所示,则该几何体的体积为()A. B. C. D.10.已知函数,且,则曲线在处的切线方程为()A. B.C. D.11.在的展开式中,项的系数为()A. B.40 C. D.8012.若,,满足,,.则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.己知,集合中有且仅有三个整数,则实数的取值范围为________.14.已知实数,满足不等式组且的最大值为,则=_____.15.函数,当时,恒成立,求.16.从编号为01,02,…,50的50个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为03,08(编号按从小到大的顺序排列),则样本中最大的编号是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数),直线与直线平行,且过坐标原点,圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)设直线和圆相交于点、两点,求的周长.18.(12分)已知(1)求;(2)若,求实数的值.19.(12分)已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.20.(12分)某地区2011年至2017年农村居民家庭人均纯收入(单位:千元)的数据如下表:(I)求关于的线性回归方程;(II)利用(I)中所求的线性回归方程,分析该地区2011年至2017年农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.参考公式:.21.(12分)复数,若是实数,求实数的值.22.(10分)已知函数.(1)讨论的单调性;(2)如果,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由得且,把代入二次方程求得,最后对的值进行检验.【详解】因为,所以且,所以,解得.当时,,显然,所以成立,故选A.【点睛】本题考查集合的交运算,注意求出参数的值后要记得检验.2、D【解析】
根据等差数列的性质可得出a+b的值,利用等比中项的性质求出c的值,于此可得出a+b+c的值。【详解】由于-1、a、b、-5成等差数列,则a+b=-1又-1、c、-4成等比数列,则c2=-1当c=-2时,a+b+c=-8;当c=2时,a+b+c=-4,因此,a+b+c=-8或-4,故选:D。【点睛】本题考查等差数列和等比数列的性质,在处理等差数列和等比数列相关问题时,可以充分利用与下标相关的性质,可以简化计算,考查计算能力,属于中等题。3、C【解析】
利用x-25的展开式通项,与x和1x2分别做乘法,分别求得x的系数,作和求得整体的【详解】x-25展开式的通项为:与x相乘可得:x⋅当r=5时得:C与1x2当r=2时得:C∴x的系数为:-32+40=8本题正确选项:C【点睛】本题考查二项式定理求解xn的系数的问题,关键在于能够运用多项式相乘的运算法则,分别求出同次项的系数,合并同类项得到结果4、B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.5、A【解析】分析:的定义域为,由得所以能求出的取值范围.详解:的定义域为,由得
所以.
①若,当时,,此时单调递增;
当时,,此时单调递减.所以是函数的极大值点.
满足题意,所以成立.
②若,由,得,当时,即,此时
当时,,此时单调递增;
当时,,此时单调递减.所以是函数的极大值点.
满足题意,所以成立..
如果函数取得极小值,不成立;
②若,由,得.
因为是f(x)的极大值点,成立;
综合①②:的取值范围是.
故选:A.点睛:本题考查函数的单调性、极值等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.6、D【解析】,,则,选D.7、C【解析】分析:首先通过题中的条件,得到棱锥的三组对棱相等,从而利用补体,得到相应的长方体,列式求得长方体的对角线长,从而求得外接球的半径,利用球体的表面积公式求得结果.详解:对棱相等的三棱锥可以补为长方体(各个对面的面对角线),设长方体的长、宽、高分别是,则有,三个式子相加整理可得,所以长方体的对角线长为,所以其外接球的半径,所以其外接球的表面积,故选C.点睛:该题考查的是有关几何体的外接球的体积问题,在解题的过程中,注意根据题中所给的三棱锥的特征,三组对棱相等,从而将其补体为长方体,利用长方体的外接球的直径就是该长方体的对角线,利用相应的公式求得结果.8、B【解析】由正态分布的性质可得,图中阴影部分的面积S=0.9545-0.6827则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.9、B【解析】
根据三视图得知该几何体是四棱锥,计算出四棱锥的底面积和高,再利用锥体体积公式可得出答案.【详解】由三视图可知,该几何体是四棱锥,底面是矩形,其面积为,高为,因此,该几何体的体积为,故选B.【点睛】本题考查三视图以及简单几何体体积的计算,要根据三视图确定几何体的形状,再根据体积公式进行计算,考查空间想象能力与计算能力,属于中等题.10、B【解析】
先对已知函数f(x)求导,由可得a的值,由此确定函数和其导函数的解析式,进而可得x=0处的切线方程。【详解】,,解得,即,,则,,曲线在点处的切线方程为,即.【点睛】本题考查求函数某点处的切线方程,解题关键是先由条件求出函数f(x)中的未知量a。11、D【解析】
通过展开二项式即得答案.【详解】在的展开式中,的系数为,故答案为D.【点睛】本题主要考查二项式定理,难度很小.12、A【解析】
利用指数函数和对数函数的单调性即可比较大小.【详解】,,,,,,,,,故选:A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
首先分析出集合里面必有元素1,再讨论集合为,,三种情况讨论,求的取值范围.【详解】,,所以集合里的元素一定有1,集合有3个元素,当集合是时,有,集合是空集;当集合是时,有,解得:;当集合是时,有,集合是空集;综上:的取值范围是故答案为:【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.14、【解析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.15、【解析】试题分析:由题意得,,因此,从而,考点:二次函数性质16、48【解析】分析:根据系统抽样的定义得到,编号之间的关系,即可得到结论.详解:已知样本中的前两个编号分别为03,08,样本数据组距为,则样本容量为,则对应的号码数,则当时,取得最大值为.故答案为:48.点睛:本题主要考查系统抽样的应用,根据条件确定组距是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线的极坐标方程为.圆C的极方程为;(2).【解析】
(1)先将直线和圆的参数方程化为普通方程,进而可得其极坐标方程;(2)将直线的极坐标方程代入圆的极坐标方程,可求出关于的方程,由,即可求出结果.【详解】(I)因为直线的参数方程为(为参数),所以直线的斜率为1,因为直线与直线平行,且过坐标原点,所以直线的直角坐标方程为,所以直线的极坐标方程为因为圆C的参数方程为(为参数),所以圆C的普通方程为,即,所以圆C的极方程为(Ⅱ)把直线m的极坐标方程代入中得,,所以所以△ABC的周长为【点睛】本题主要考查参数方程与极坐标方程,属于基础题型.18、(1);(2)【解析】分析:(1)化简复数为代数形式后,再结合复数模的公式,即可求解;(2)化简复数z为1+i,由条件可得a+b+(a+2)i=1﹣i,解方程求得a,b的值.详解:(1)化简得(2)解得点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.19、(1)A∪B={x|-2<x<3}(2)(3)【解析】试题分析:(1)m=-1,用轴表示两个集合,做并集运算,注意空心点,实心点.(2)由于A⊆B,首先要保证1-m>2m,即集合B非空,然后由数轴表示关系,注意等号是否可取.(3)空集有两种情况,一种是集合B为空集,一种是集合B非空,此时用数灿表示,写出代数关系,注意等号是否可取.试题解析:(1)当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}(2)由A⊆B知,解得,即m的取值范围是(3)由A∩B=∅得①若,即时,B=∅符合题意②若,即时,需或得或∅,即综上知,即实数的取值范围为20、(I);(II)6.3千元.【解析】
(I)由表中数据计算、,求出回归系数,写出回归方程;(II)由0.5>0知y关于x正相关,求出x=8时的值即可.【详解】(I)由表中数据知,,,,,关于的线性回归方程为;(II)由(I)可知,,故该地区2011年至2017年农村居民家庭人均纯收入在逐年增加,平均每年增加0.5千元,当时,,预测该地区2018年农村居民家庭人均纯收入为6.3千元.【点睛】本题考查了线性回归方程的求法与应用问题,考查计算能力,是基础题.21、【解析】
将复数进行四则运算,利用是实数,得到关于的二次方程,求得的值即可.【详解】,因为是实数,所以或,因为,所以.【点睛】本题考查复数的四则运算、共轭复数的概念、复数的分类,考查运算求解能力.22、(1)答案见解析;上是增函数;(2).【解析】分析:(1)求导得:,分类讨论可知当时,在上是增函数,当时,在上是减函数;在上是增函数.(2)由(1)可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人租冰柜合同标准文本
- 入股合同样本写
- 个人房产代销合同标准文本
- 业务销售合同样本
- 债权书收购合同标准文本
- ups维修合同样本
- 业主 工程 合同标准文本
- 公司组团烧烤合同样本
- 公司合作关系合同标准文本
- 临租合同标准文本
- 河南省洛阳市2023-2024学年高二下学期4月期中考试数学试题(含答案)
- 高考作文标准方格纸-A4-可直接打印
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 毛泽东诗词鉴赏
- (高清版)DZT 0426-2023 固体矿产地质调查规范(1:50000)
- 毕业设计(论文)-某住宅2#楼电气系统设计
- 水闸工程现状调查分析报告
- 基于单片机的电子广告牌设计
- 猫之书:100种猫咪行为解读猫主子的真心话
- 吊篮后支架加高5米施工方案
- Mysql 8.0 OCP 1Z0-908 CN-total认证备考题库(含答案)
评论
0/150
提交评论