版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,过的直线交抛物线于两点(在轴上方),延长交抛物线的准线于点,若,,则抛物线的方程为()A. B. C. D.2.如图,可导函数在点处的切线方程为,设,为的导函数,则下列结论中正确的是()A.,是的极大值点B.,是的极小值点C.,不是的极值点D.,是是的极值点3.已知集合A={x|x2-6x+5≤0},B={x|y=A.1,2 B.1,24.奇函数在区间上单调递减,且,则不等式的解集是()A. B.C. D.5.已知双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B. C. D.6.与复数相等的复数是()A. B. C. D.7.某巨型摩天轮.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第35分钟时他距地面大约为()米.A.75 B.85 C.100 D.1108.如图是函数的导函数的图象,则下列说法正确的是()A.是函数的极小值点B.当或时,函数的值为0C.函数关于点对称D.函数在上是增函数9.某公共汽车上有5名乘客,沿途有4个车站,乘客下车的可能方式()A.种 B.种 C.种 D.种10.有件产品,其中件是次品,从中任取件,若表示取得次品的件数,则()A. B. C. D.11.已知曲线在点处的切线平行于直线,那么点的坐标为()A.或 B.或C. D.12.、、、、、六名同学站成一排照相,其中、两人相邻的不同排法数是()A.720种 B.360种 C.240种 D.120种二、填空题:本题共4小题,每小题5分,共20分。13.设是等差数列的前项和,已知,,则_______.14.如图所示的伪代码,最后输出的值为__________.15.平面上两组平行线互相垂直,一组由条平行线组成,一组由条平行线组成,则它们能围成的矩形个数是___________16.的展开式中的常数项为______。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,,其中a,.Ⅰ求的极大值;Ⅱ设,,若对任意的,恒成立,求a的最大值;Ⅲ设,若对任意给定的,在区间上总存在s,,使成立,求b的取值范围.18.(12分)如图,在三棱锥中,,在底面上的射影在上,于.(1)求证:平行平面,平面平面;(2)若,求直线与平面所成角的正弦值.19.(12分)参与舒城中学数学选修课的同学对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图.定价x(元/千克)102030405060年销量y(千克)115064342426216586z=2lny14.112.912.111.110.28.9参考数据:,.(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).(3)当定价为150元/千克时,试估计年销量.附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回归直线x+的斜率和截距的最小二乘估计分别为20.(12分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为.(Ⅰ)写出的直角坐标方程;(Ⅱ)为直线上一动点,当到圆心的距离最小时,求的直角坐标.21.(12分)已知,,分别为三个内角,,的对边,且.(1)求角的大小;(2)若且的面积为,求的值.22.(10分)某小组共有10人,利用假期参加义工活动,已知参加义工活动1次的有2人、2次的有4人、3次的有4人.现从这10人中随机选出2人作为该组代表参加座谈会.(I)设为事件“选出的2人参加义工活动次数之和为4”,求事件发生的概率;(II)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:先求得直线直线AB的倾斜角为,再联立直线AB的方程和抛物线的方程求出点A,B的坐标,再求出点C的坐标,得到AC||x轴,得到,即得P的值和抛物线的方程.详解:设=3a,设直线AB的倾斜角为,所以直线的斜率为.所以直线AB的方程为.联立所以,所以直线OB方程为,令x=-所以故答案为:C.点睛:(1)本题主要考查抛物线的几何性质,考查直线和抛物线的位置关系和抛物线方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答圆锥曲线题目时,看到曲线上的点到焦点的距离(焦半径),要马上联想到利用圆锥曲线的定义解答.2、B【解析】
由图判断函数的单调性,结合为在点P处的切线方程,则有,由此可判断极值情况.【详解】由题得,当时,单调递减,当时,单调递增,又,则有是的极小值点,故选B.【点睛】本题通过图象考查导数的几何意义、函数的单调性与极值,分析图象不难求解.3、C【解析】
由题意,集合A={x|1≤x≤5},B={x|x>2},再根据集合的运算,即可求解.【详解】由题意,集合A={x2-6x+5≤0}={x|1≤x≤5}所以A∩B={x|2<x≤5}=(2,5],故选C.【点睛】本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】
根据函数为奇函数,以及上的单调性,判断出上的单调性,求得的值,对分为四种情况讨论,由此求得不等式的解集,进而求得的解集.【详解】由于函数为奇函数,且在上递减,故在上递减,由于,所以当或时,;当或时,.所以当或时.故当或即或时,.所以不等式的解集为.故本小题选A.【点睛】本小题主要考查函数的奇偶性、单调性,考查函数变换,考查含有函数符号的不等式的解法,属于中档题.5、B【解析】
由渐近线方程得出的值,结合可求得【详解】∵双曲线的一条渐近线方程为,∴,∴,解得,即离心率为.故选:B.【点睛】本题考查双曲线的渐近线和离心率,解题时要注意,要与椭圆中的关系区别开来.6、C【解析】
根据复数运算,化简复数,即可求得结果.【详解】因为.故选:C.【点睛】本题考查复数的运算,属基础题.7、B【解析】分析:设出P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B,由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(35)的值即可.详解:设P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意可知:A=50,B=110﹣50=60,T==21,∴ω=,即f(t)=50sin(t+φ)+60,又因为f(0)=110﹣100=10,即sinφ=﹣1,故φ=,∴f(t)=50sin(t+)+60,∴f(35)=50sin(×35+)+60=1.故选B.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.8、D【解析】
由导函数的图象得到原函数的增减区间及极值点,然后逐一分析四个命题即可得到答案.【详解】由函数f(x)的导函数图象可知,当x∈(−∞,−a),(−a,b)时,f′(x)<0,原函数为减函数;当x∈(b,+∞)时,f′(x)>0,原函数为增函数.故不是函数的极值点,故A错误;当或时,导函数的值为0,函数的值未知,故B错误;由图可知,导函数关于点对称,但函数在(−∞,b)递减,在(b,+∞)递增,显然不关于点对称,故C错误;函数在上是增函数,故D正确;故答案为:D.【点睛】本题考查函数的单调性与导数的关系,属于导函数的应用,考查数形结合思想和分析能力,属于中等题.9、D【解析】
5名乘客选4个车站,每个乘客都有4种选法.【详解】每个乘客都有4种选法,共有种,选D【点睛】每个乘客独立,且每个乘客都有4种选法10、B【解析】
由题意,知取0,1,2,3,利用超几何分布求出概率,即可求解.【详解】根据题意,故选:B.【点睛】本题考查利用超几何分布求概率,属基础题.11、B【解析】分析:设的坐标为,则,求出函数的导数,求得切线的斜率,由两直线平行的条件可得的方程,求得的值从而可得结果.详解:设的坐标为,则,的导数为,在点处的切线斜率为,由切线平行于直线,可得,解得,即有或,故选B.点睛:本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线斜率,考查两直线平行的条件:斜率相等,属于基础题.12、C【解析】
先把、两人捆绑在一起,然后再与其余四人全排列即可求出、两人相邻的不同排法数.【详解】首先把把、两人捆绑在一起,有种不同的排法,最后与其余四人全排列有种不同的排法,根据分步计算原理,、两人相邻的不同排法数是,故本题选C.【点睛】本题考查了全排列和分步计算原理,运用捆绑法是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、49【解析】
.14、21【解析】分析:先根据伪代码执行循环,直到I<8不成立,结束循环输出S.详解:执行循环得结束循环,输出.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.15、【解析】
分析矩形的组成:两个长,两个宽,然后利用分步乘法计数原理与排列组合思想计算可围成的矩形数.【详解】因为矩形由两个长,两个宽构成,第一步选长:从条直线中选条,共有种方法,第二步选宽:从条直线中选条,共有种方法,所以可围成的矩形数为:.故答案为:.【点睛】本题考查分步乘法计数原理和排列组合的综合应用,难度一般.对于计数问题,第一步可考虑是属于分类还是分步问题,第二步可考虑选用排列或组合的思想解决问题.16、240【解析】
根据二项式展开式通项公式确定常数项对应项数,再代入得结果【详解】,令得,,所以的展开式中的常数项为.【点睛】本题考查求二项式展开式中常数项,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)1;(Ⅱ);(Ⅲ).【解析】
Ⅰ求出的导数,令导数大于0,得增区间,令导数小于0,得减区间,进而求得的极大值;Ⅱ当,时,求出的导数,以及的导数,判断单调性,去掉绝对值可得,构造函数,求得的导数,通过分离参数,求出右边的最小值,即可得到a的范围;Ⅲ求出的导数,通过单调区间可得函数在上的值域为,由题意分析时,结合的导数得到在区间上不单调,所以,,再由导数求得的最小值,即可得到所求范围.【详解】Ⅰ,当时,,在递增;当时,,在递减.则有的极大值为;Ⅱ当,时,,,在恒成立,在递增;由,在恒成立,在递增.设,原不等式等价为,即,,在递减,又,在恒成立,故在递增,,令,,∴,在递增,即有,即;Ⅲ,当时,,函数单调递增;当时,,函数单调递减.又因为,,,所以,函数在上的值域为.由题意,当取的每一个值时,在区间上存在,与该值对应.时,,,当时,,单调递减,不合题意,当时,时,,由题意,在区间上不单调,所以,,当时,,当时,0'/>所以,当时,,由题意,只需满足以下三个条件:,,使.,所以成立由,所以满足,所以当b满足即时,符合题意,故b的取值范围为.【点睛】本题考查导数的运用:求单调区间和极值,主要考查不等式恒成立和存在性问题,注意运用参数分离和构造函数通过导数判断单调性,求出最值,属于难题.18、(1)详见解析(2)【解析】
(1)证明EF∥BC,从而BC∥平面DEF,结合AB⊥DF,AB⊥DE,推出AB⊥平面DEF,即可证明平面DAB⊥平面DEF.
(2)在△DEF中过E作DF的垂线,垂足H,说明∠EBH即所求线面角,通过求解三角形推出结果.【详解】解:(1)证明:因为,所以,分别是,的中点所以,从而平面又,,所以平面从而平面平面(2)在中过作的垂线,垂足由(1)知平面,即所求线面角由是中点,得设,则,因为,则,,,所以所求线面角的正弦值为【点睛】本题考查直线与平面所成角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及计算能力,是中档题.19、(1)z与x具有较强的线性相关性(2)(3)估计年销量为=1千克【解析】
由散点图可知z与x对应的散点图基本都在一条直线附近,线性相关性更强根据公式计算出回归方程的系数,即可写出回归方程代入回归方程求出年销量【详解】(1)由散点图知,z与x具有较强的线性相关性.(2)∵≈-0.10,∴≈15,∴x+=15-0.10x.又∵z=2lny,∴y关于x的回归方程为.(3)当定价为150元/千克时,估计年销量为=1千克.【点睛】本题考查了线性回归方程及其应用,只需理清题目中的数据,代入公式即可求出线性回归方程,然后求出年销量,较为基础20、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先将两边同乘以可得,再利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44579-2024热塑性塑料分集水器
- 借款合同诉讼时效及其影响因素
- 无底薪劳动合同样本
- 货物销售合同格式
- 二手车交易协议书模板示例
- 财务咨询协议书
- 2024年肉类供货合同范本
- 个人信贷代理协议
- 2024年项目合作协议书撰写大全
- 承揽合同-网页制作协议
- 【乡村振兴视域下农村生态环境治理的重要性及优化对策(论文)4100字】
- 国家工作人员学法考法知识考试题及答案
- 第18课 我的白鸽 课件 2024-2025学年统编版语文七年级上册
- 2024至2030年中国气管插管市场前景及融资战略咨询报告
- 国家开放大学(广西)《云计算及应用》作业1-5参考答案
- 《研学旅行基地运营与管理》课件-4.3.2研学基地住宿设施服务的管理
- 矿山开采规划与设计考核试卷
- 《马克思主义发展史》题集
- 2024-2030年中国CVD和和ALD前体行业市场发展趋势与前景展望战略分析报告
- 人音版音乐五年级上册第6课《嬉游曲》教学设计
- 北师大版(2024新教材)七年级上册 第3章 整式及其加减 单元测试卷 含详解
评论
0/150
提交评论