2022-2023学年福建省泉州市洛江区北片区数学八年级第二学期期末考试试题含解析_第1页
2022-2023学年福建省泉州市洛江区北片区数学八年级第二学期期末考试试题含解析_第2页
2022-2023学年福建省泉州市洛江区北片区数学八年级第二学期期末考试试题含解析_第3页
2022-2023学年福建省泉州市洛江区北片区数学八年级第二学期期末考试试题含解析_第4页
2022-2023学年福建省泉州市洛江区北片区数学八年级第二学期期末考试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,D,E,F分别是AB、CA、BC的中点,若CF=3,CE=4,EF=5,则CD的长为()A.5 B.6 C.8 D.102.下列各组数中不能作为直角三角形的三边长的是()A.3,4,5 B.13,14,15 C.5,12,13 D.15,8,173.八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示甲乙丙丁平均数85939386方差333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.甲 B.乙 C.丙 D.丁4.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A., B., C., D.,5.如图所示,在中,,则为()A. B. C. D.6.小红把一枚硬币抛掷10次,结果有4次正面朝上,那么(

)A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是67.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是()A. B.C. D.8.如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有()A.1个 B.2个 C.4个 D.3个9.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是()A. B. C. D.10.若x>y,则下列式子中错误的是()A.﹣3x>﹣3y B.3x>3y C.x﹣3>y﹣3 D.x+3>y+3二、填空题(每小题3分,共24分)11.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.12.某地区为了增强市民的法治观念,随机抽取了一部分市民进行一次知识竞赛,将竞赛成绩(得分取整数)整理后分成五组并绘制成如图所示的频数直方图.请结合图中信息,解答下列问题:抽取了多少人参加竞赛?这一分数段的频数、频率分别是多少?这次竞赛成绩的中位数落在哪个分数段内?13.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.14.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.15.如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,若F是BC的中点,且∠EDF=45°,则BE的长为_______.16.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为_____m.17.在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________18.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.三、解答题(共66分)19.(10分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x第一步=2xy+4x+1第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.20.(6分)定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.(1)如图,在平面直角坐标系中,点为坐标原点,以点为圆心,5为半径作圆,交轴的负半轴于点,求过点的圆的切线的解析式;(2)若抛物线()与直线()相切于点,求直线的解析式;(3)若函数的图象与直线相切,且当时,的最小值为,求的值.21.(6分)如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.22.(8分)如图,在每个小正方形的边长都是的正方形网格中,的三个顶点都在小正方形的格点上.将绕点旋转得到(点、分别与点、对应),连接,.(1)请直接在网格中补全图形;(2)四边形的周长是________________(长度单位)(3)直接写出四边形是何种特殊的四边形.23.(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点在线段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.(1)求直线的解析式;(2)求点的坐标;(3)求与的解析式,并直接写出自变量的取值范围.24.(8分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.25.(10分)某校为了解全校学生下学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:活动次数x频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤12mb12<x≤1540.0815<x≤182n根据以上图表信息,解答下列问题:(1)表中a=___,b=___;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1500名学生,请估计该校在下学期参加社区活动超过6次的学生有多少人?26.(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…(应用与探究)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)

参考答案一、选择题(每小题3分,共30分)1、A【解析】

首先由勾股定理逆定理判断△ECF是直角三角形,由三角形中位线定理求出AB的长,最后根据直角三角形斜边上的中线等于斜边的一半求出CD的长即可.【详解】∵CF=3,CE=4,EF=5,∴CF2+CE2=EF2,∴△ECF是直角三角形,即△ABC也是直角三角形,∵E,F分别是CA、BC的中点,∴EF是△ABC的中位线,∴AB=2EF=10,∵D为AB的中点,∴CD=AB=故选:A.【点睛】此题主要考查了直角三角形的判定,三角形的中位线定理以及直角三角形斜边上的中线等于斜边的一半等知识,熟练掌握上述知识是解答此题的关键.2、B【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.【详解】解:A选项中,,∴能构成直角三角形;B选项中,,∴不能构成直角三角形;C选项中,,∴能构成直角三角形;D选项中,,∴能构成直角三角形;故选B.【点睛】本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.3、B【解析】

根据平均数和方差的意义解答.【详解】解:从平均数看,成绩最好的是乙、丙同学,

从方差看,乙方差小,发挥最稳定,

所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选乙,

故选:B.【点睛】本题考查平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、A【解析】试题解析:一次函数y=kx+b-x即为y=(k-1)x+b,∵函数值y随x的增大而增大,∴k-1>1,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<1.故选A.5、D【解析】

根据直角三角形的两个锐角互余的性质解答.【详解】解:在△ABC中,∠C=90°,则x+2x=90°.解得:x=30°.所以2x=60°,即∠B为60°.故选:D.【点睛】本题考查了直角三角形的性质,直角三角形的两个锐角互余,由此借助于方程求得答案.6、B【解析】小红做抛硬币的实验,共抛了10次,4次正面朝上,6次反面朝上,则正面朝上的频数是4,反面朝上的频数是6.故选B.7、B【解析】试题分析:根据两函数图象所过的象限进行逐一分析,再进行选择即可.解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;B、由函数y=ax+b过二、三、四象限可知,a<0,b<0;由函数的图象可知,a+b>0,两结论相矛盾,故不可能成立;C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;故选B.考点:反比例函数的图象;一次函数的图象.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8、D【解析】

根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.【详解】∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,AD∥BC,∴∠AEB=∠EBC,∠DEC=∠ECB,∵BE、CE分别平分∠ABC和∠DCB,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠AEB=∠ABE,∠DCE=∠DEC,∴AB=AE,DE=DC,∴AE=DE,∴△ABE和△DCE都是等腰直角三角形,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE,∴①②③都正确,故选D.【点睛】此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理.9、B【解析】

根据一次函数的增减性进行判断.【详解】解:对y=-3x+b,因为k=-3<0,所以y随x的增大而减小,因为―2<―1<1,所以,故选B.【点睛】本题考查了一次函数的增减性,熟练掌握一次函数的性质是解题的关键.10、A【解析】

根据不等式的基本性质逐一判断即可.【详解】解:∵x>y,∴A、﹣3x<﹣3y,故A错误,B、3x>3y,正确,C、x﹣3>y﹣3,正确,D、x+3>y+3,正确,故答案为:A.【点睛】本题考查了不等式的基本性质,解题的关键是熟知当不等式两边同时乘以一个负数,不等号的方向要改变.二、填空题(每小题3分,共24分)11、电影票的售价电影票的张数,票房收入.【解析】

根据常量,变量的定义进行填空即可.【详解】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为:电影票的售价;电影票的张数,票房收入.【点睛】本题考查了常量和变量,掌握常量和变量的定义是解题的关键.12、(1)抽取了人参加比赛;(2)频数为,频数为0.25;(3)【解析】

(1)将每组的人数相加即可;(2)看频数直方图可知这一分数段的频数为12,用频数÷总人数即可得到频率;(3)直接通过频数直方图即可得解.【详解】解:(人),答:抽取了人参加比赛;频数为,频数为;这次竞赛成绩的中位数落在这个分数段内.【点睛】本题主要考查频数直方图,中位数等,解此题的关键在于熟练掌握其知识点,通过直方图得到有用的信息.13、2.10【解析】由题意可知,将木块展开,

相当于是AB+2个正方形的宽,

∴长为2+0.2×2=2.4米;宽为1米.

于是最短路径为:故答案是:2.1.14、三角形的中位线等于第三边的一半【解析】∵D,E分别是AC,BC的中点,

∴DE是△ABC的中位线,

∴DE=AB,

设DE=a,则AB=2a,故答案是:三角形的中位线等于第三边的一半.15、4【解析】

延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.【详解】解:延长F至G,使CG=AE,连接DG、EF,如图所示:∵四边形ABCD是正方形,∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,∴∠DCG=90°,在△ADE和△CDG中,AE=CG∠A=∠DCG=∴△ADE≌△CDG(SAS),∴DE=DG,∠ADE=∠CDG,∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,∵∠EDF=45°,∴∠GDF=45°,在△EDF和△GDF中,DE=DG∠EDF=∠GDF∴△EDF≌△GDF(SAS),∴EF=GF,∵F是BC的中点,∴BF=CF=3,设AE=CG=x,则EF=GF=CF+CG=3+x,在Rt△BEF中,由勾股定理得:32解得:x=2,即AE=2,∴BE=AB-AE=6-2=4.【点睛】此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.16、2.2【解析】

作出图形,利用定理求出BD长,即可解题.【详解】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25,在Rt△BD中,∠DB=90°,D=2米,BD2+D2=B2,∴BD2+22=6.25,∴BD2=2.25,∵BD0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.【点睛】本题考查了勾股定理的实际应用,属于简单题,利用勾股定理求出BD的长是解题关键.17、20或22【解析】

根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22【点睛】本题主要考查等腰直角三角形的性质,关键在于确定宽的长.18、0.7【解析】

用通话时间不足10分钟的通话次数除以通话的总次数即可得.【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.三、解答题(共66分)19、(1)一;(2)2xy﹣1.【解析】

(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【详解】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.20、(1);(2);(3)1或【解析】

(1)连接,由、可求,即.因为过点的切线,故有,再加公共角,可证,由对应边成比例可求的长,进而得点坐标,即可求直线解析式.(2)分别把点代入抛物线和直线解析式,求得抛物线解析式为,直线解析式可消去得.由于直线与抛物线相切(只有一个交点),故联立解析式得到关于的方程有两个相等的实数根,即△,即求得的值.(3)因为二次函数图象与直线相切,所以把二次函数和直线解析式联立,得到关于的方程有两个相等是实数根,即△,整理得式子,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线.分类讨论对称轴在左侧、中间、右侧三种情况,画出图形得:①当对称轴在左侧即时,由图象可知时随的增大而增大,所以时取得最小值,把、代入得到关于的方程,方程无解;②当对称轴在范围内时,时即取得最小值,得方程,解得:;③当对称轴在2的右侧即时,由图象可知时随的增大而减小,所以时取得最小值,把、代入即求得的值.【详解】解:(1)如图1,连接,记过点的切线交轴于点,,,设直线解析式为:,解得:过点的的切线的解析式为;(2)抛物线经过点,解得:抛物线解析式:直线经过点,可得:直线解析式为:直线与抛物线相切关于的方程有两个相等的实数根方程整理得:△解得:直线解析式为;(3)函数的图象与直线相切关于的方程有两个相等的实数根方程整理得:△整理得:,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线当时,的最小值为①如图2,当时,在时随的增大而增大时,取得最小值,方程无解;②如图3,当时,时,取得最小值,解得:;③如图4,当时,在时随的增大而减小时,取得最小值,解得:,(舍去)综上所述,的值为1或.【点睛】本题考查了圆的切线的性质,相似三角形的判定和性质,一元二次方程的解法及根与系数的关系,二次函数的图象与性质.第(3)题的解题关键是根据相切列得方程并得到含、的等式,转化为关于的二次函数,再根据画图讨论抛物线对称轴情况进行解题.21、(1)△BEC是直角三角形,理由见解析(2)四边形EFPH为矩形,理由见解析(3)【解析】(1)△BEC是直角三角形,理由略(2)四边形EFPH为矩形证明:在矩形ABCD中,∠ABC=∠BCD=900∴PA=,PD=2∵AD=BC=5∴AP2+PD2=25=AD2∴∠APD=900(3分)同理∠BEC=900∵DE=BP∴四边形BPDE为平行四边形∴BE∥PD(4分)∴∠EHP=∠APD=900,又∵∠BEC=900∴四边形EFPH为矩形(5分)(3)在RT△PCD中∠FfPD∴PD·CF=PC·CD∴CF==∴EF=CE-CF=-=(7分)∵PF==∴S四边形EFPH=EF·PF=(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;(2)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.22、(1)见解析;(2);(3)正方形,见解析【解析】

(1)根据中心对称的特点得到点A1、C1,顺次连线即可得到图形;(2)根据图形分别求出AC、、、的长即可得到答案;(3)求出AB、AC、BC的长度,根据勾股定理逆定理及中心对称图形得到四边形是正方形,即可求出答案.【详解】(1)如图,(2)∵,,,,∴四边形的周长=AC+++=,故答案为:;(3)由题意得:,,,∴AB=BC,,∴△ABC是等腰直角三角形,由(2)得,∴四边形是菱形,由中心对称得到,,,∴是等腰直角三角形,∴,∴,∴四边形是正方形.【点睛】此题考查中心对称图形的作图能力,勾股定理计算网格中线段长度,等腰直角三角形的判定定理及性质定理,勾股定理的逆定理,正方形的判定定理.23、(1);(2);(3).【解析】

(1)将A,E的坐标代入解析式即可解答(2)根据题意可知CD=2,将其代入解析式,即可求出点C(3)根据题意可分情况讨论:当时,;当时,,即可解答【详解】(1)设直线的解析式为,因为经过点,点.,解得:,∴.(2)当时,,,∴.(3)当时,如图1.点的横坐标为,点的横坐标为.∴当时,,∴,∴当时,,∴.∴.当时,如图2.∴综上.【点睛】此题考查一次函数与几何图形,解题关键在于将已知点代入解析式24、(Ⅰ)40,1;(Ⅱ)平均数是1.2,众数为1.2,中位数为1.2;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为3.【解析】

(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;

(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;

(Ⅲ)利用总人数乘以对应的百分比即可求解.【详解】解:(Ⅰ)本次接受调查的初中学生人数为:4+8+12+10+3=40(人),

m=100×=1.

故答案是:40,1;

(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.2.∵在这组数据中,1.2出现了12次,出现的次数最多,∴这组数据的众数为1.2.∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.2,有,∴这组数据的中位数为1.2.(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论