版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年贵州省贵阳市兴仁第一中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.以(2,﹣1)为圆心且与直线x﹣y+1=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=8 B.(x﹣2)2+(y+1)2=4 C.(x+2)2+(y﹣1)2=8 D.(x+2)2+(y﹣1)2=4参考答案:A【考点】圆的标准方程.【分析】直线与圆相切,则圆心到直线的距离即为圆的半径.利用点到直线的距离公式求出半径即可得到圆的方程.【解答】解:圆心(2,﹣1)到直线x﹣y+1=0的距离为d==2,∵圆与直线直线x﹣y+1=0相切,∴半径r=2.∴所求圆的方程为(x﹣2)2+(y+1)2=8.故选A.2.如图所示的程序框图,如果输入三个实数,,,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的(
)A.
B.
C.
D.
参考答案:B3.已知f(x)为R上的可导函数,且?x∈R,均有f(x)+f'(x)<0,则以下判断正确的是()A.e2017?f(2017)>f(0)B.e2017?f(2017)=f(0)C.e2017?f(2017)<f(0)D.e2017f(2017)与f(0)的大小无法确定参考答案:C【考点】6A:函数的单调性与导数的关系.【分析】令g(x)=exf(x),求出函数的导数,根据函数的单调性,可得结论.【解答】解:令g(x)=exf(x),则g′(x)=ex[f(x)+f′(x)]<0,故g(x)在R递减,故g(2017)<g(0),即e2017f(2017)<f(0),故选:C.【点评】本题考查了函数的单调性问题,考查导数的应用,是一道基础题.4.如图所示的阴影部分是由x轴,直线x=1及曲线y=ex﹣1围成,现向矩形区域OABC内随机投掷一点,则该点落在阴影部分的概率是()A. B. C. D.参考答案:D【考点】CF:几何概型.【分析】求出阴影部分的面积,以面积为测度,即可得出结论.【解答】解:由题意,阴影部分的面积为==e﹣2,∵矩形区域OABC的面积为e﹣1,∴该点落在阴影部分的概率是.故选D.5.已知复数,则的虚部为()A.﹣3 B.3 C.3i D.﹣3i参考答案:B【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简,求得后得答案.【解答】解:由=,得,∴的虚部为3.故选:B.6.函数的图象恒过定点A,若点A在直线上,其中,则的最小值为(
).A.16
B.24
C.25
D.50参考答案:C当,即时,,即函数(且)的图像恒过定点,又点在直线上,所以,又,则(当且仅当,即时取等号),即的最小值为25;故选C.
7.“”是“方程”表示焦点在y轴上的椭圆”的(
)条件A充分而不必要
B必要而不充分
C充要
D既不充分也不必要
参考答案:C8.随机变量X~B(n,p)且E(X)=3.6,D(X)=2.16,则
A.n=4,p=0.9
B.n=9,p=0.4
C.n=18,p=0.2
D.n=36,P=0.l参考答案:B9.(
)A.0 B. C.1 D.2参考答案:C【分析】根据定积分的意义和性质,,计算即可得出.【详解】因为,故选C.【点睛】本题主要考查了含绝对值的被积函数的定积分求值,定积分的性质,属于中档题.10.函数在上有两个零点,则实数的取值范围是(
)A.B.C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.阅读右图所示的程序框图,运行相应的程序,则输出的s值等于
.参考答案:略12.一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长
都为1),则该多面体的体积为_________,表面积为___________.参考答案:试题分析:如图,从三视图所提供的信息可以看出该几何体是一个正方体截取一个三棱锥角所剩余的几何体,其体积,表面积,故应填.考点:三视图的识读和理解.13.函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,4]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是
. 参考答案:70【考点】绝对值不等式的解法. 【专题】函数思想;转化法;函数的性质及应用;导数的综合应用. 【分析】对于区间[﹣3,4]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,4]上的任意x,都有f(x)max﹣f(x)min≤t,利用导数确定函数的单调性,求最值,即可得出结论. 【解答】解:对于区间[﹣3,4]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,4]上的任意x,都有f(x)max﹣f(x)min≤t, ∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1), ∵x∈[﹣3,4], ∴函数在[﹣3,﹣1]、[1,4]上单调递增,在[﹣1,1]上单调递减; ∴f(x)max=f(4)=51,f(x)min=f(﹣3)=﹣19; ∴f(x)max﹣f(x)min=70, ∴t≥70; ∴实数t的最小值是70. 故答案为:70. 【点评】本题考查导数知识的运用,考查恒成立问题,正确求导,确定函数的最值是关键. 14.一只蚂蚁在边长为4的正三角形内爬行,某时刻此蚂蚁距三角形三个顶点的距离均超过1的概率为.参考答案:1﹣【考点】几何概型.【分析】根据题意,记“蚂蚁距三角形三个顶点的距离均超过1”为事件A,则其对立事件为“蚂蚁与三角形的三个顶点的距离不超过1”,先求得边长为4的等边三角形的面积,再计算事件构成的区域面积,由几何概型可得P(),进而由对立事件的概率性质,可得答案.【解答】解:记“蚂蚁距三角形三个顶点的距离均超过1”为事件A,则其对立事件为“蚂蚁与三角形的三个顶点的距离不超过1”,边长为4的等边三角形的面积为S=×42=4,则事件构成的区域面积为S()=3×××π×12=,由几何概型的概率公式得P()==;P(A)=1﹣P()=1﹣;故答案为:1﹣.15.若有三个单调区间,则的取值范围是_______.参考答案:16.已知点A(4,0),抛物线C:y2=2px(0<p<4)的焦点为F,点P在C上,△PFA为正三角形,则p=.参考答案:
【分析】根据抛物线的焦点,结合等边三角形的性质,运用中点坐标公式,求出P的坐标,代入抛物线的方程,解方程可得p的值.【解答】解:抛物线C:y2=2px(0<p<4)的焦点为F(,0),可得|AF|=4﹣,由△PFA为等边三角形,可得P((4+),(4+)),代入抛物线的方程,可得(4+)2=2p?(4+),化为5p2+112p﹣192=0,解得p=或﹣24(舍去),故答案为:.17.从直线上的点向圆引切线,则切线长的最小值为
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.APEC是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年APEC会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对APEC会议的关注程度,随机选取了100名年龄在[20,45]内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为[20,25),[25,30),[30,35),[35,40),[40,45]).(1)求选取的市民年龄在[30,35)内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与APEC会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在[35,40)内的概率.参考答案:(1)30人;(2).【分析】(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用分层抽样的方法在50名志愿者中抽取5名志愿者,每组抽取的人数分别为:第3组;第4组.所以应从第3,4组中分别抽取3人,2人.记第3组的3名志愿者分别为,第4组的2名志愿者分别为,则从5名志愿者中选取2名志愿者的所有情况为,,,,,,,,,,共有10种.其中第4组的2名志愿者至少有一名志愿者被选中的有:,,,,,,,共有7种,所以至少有一人的年龄在内的概率为.【点睛】本题主要考查由频率分布直方图求频数,以及古典概型的概率问题,会分析频率分布直方图,熟记古典概型的概率计算公式即可,属于常考题型.19.已知函数.(1)若在处的切线方程为,求m,n的值;(2)若m为区间[1,4]上的任意实数,且对任意,总有成立,求实数t的最小值.参考答案:(1),(2)3【分析】(1)由题意得,即,又,即可解得n.(2)根据,,可得∴,故在上单调递增,假设,可得且,即可去掉绝对值,令,依题意,应满足在上单调递减,在上恒成立.即在上恒成立,令,讨论可得若,,若,,分析可得的最小值.【详解】解:(1)∵∴,即,解得.(2)依题意∴,故在上单调递增,不妨设,则且,原不等式即为.令,依题意,应满足在上单调递减,即在上恒成立.即上恒成立,令,则(i)若,,此时在上单调递增,故此时(ii)若,时,,单调递增;时,,单调递减;故此时∴,故对于任意,满足题设条件的最小值为3.【点睛】本题考查导数应用:已知切线方程求参数,恒成立求最值,考查分类讨论和构造函数法,考查计算,推理,方程转化的能力,属难题.20.)如图,阴影部分区域是由函数图象,直线围成,求这阴影部分区域面积。参考答案:----------(5分)-----------------(9分)------------------------------(10分)解法二:所求面积是以长为,宽为了2的矩形的面积的一半,所以所求的面积为.
略21.已知直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年地下室产权交易与资产评估合同3篇
- 二零二五年度仓储租赁合同范本(含仓储技术支持)3篇
- 二零二五年度企业环保责任担保合同2篇
- 2024版产品工艺保密合作合同书版B版
- 2025短期劳务试用合同文本
- 2024年版股权回购保障合同版
- 2024版商铺权属变更协议样本3篇
- 2024年蒸汽锅炉安装合作协议
- 二零二五年度个人创业贷款延期还款协议范本与创业扶持3篇
- 2025年度文化产业竞业限制协议模板3篇
- GB/T 32545-2016铁矿石产品等级的划分
- 七年级下册道德与法治复习资料
- 阿里云数字化转型生态介绍课件
- 初中语文人教八年级上册《诚信综合实践》PPT
- 奥齿泰-工具盒使用精讲讲解学习课件
- 最新MARSI-医用黏胶相关皮肤损伤课件
- 工程开工报审表范本
- 航空小镇主题乐园项目规划设计方案
- 保洁冬季防滑防冻工作措施
- 少儿美术课件-《我的情绪小怪兽》
- 永续债计入权益的必备条件分析
评论
0/150
提交评论