版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年云南省昆明市西山区碧鸡中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.
“龟兔赛跑”故事中有这么一个情节:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.如果用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图中与该故事情节相吻合的是
(
)
参考答案:B2.与函数y=|x|相等的函数是()A.y=()2 B.y=()3 C.y= D.y=参考答案:C【考点】判断两个函数是否为同一函数.【专题】函数思想;综合法;函数的性质及应用.【分析】对于A,B,D经过化简都可得到y=x,显然对应法则和y=|x|的不同,即与y=|x|不相等,而C化简后会得到y=|x|,从而得出该函数和y=|x|相等.【解答】解:y=,,=x,这几个函数的对应法则和y=|x|的不同,不是同一函数;,定义域和对应法则都相同,是同一函数.故选C.【点评】考查函数的三要素:定义域、值域,和对应法则,三要素中有一要素不同,便不相等,而只要定义域和对应法则相同时,两函数便相等.3.,,tan56°的大小关系是(
)A. B.C. D.参考答案:B【分析】先化简,再利用函数的单调性比较和的大小即得解.【详解】由题得,因为函数在单调递增,所以.故得.故选:【点睛】本题主要考查诱导公式和正切函数的单调性,意在考查学生对这些知识的理解掌握水平.4.若函数,且的图象过第一、二、三象限,则有(
)A.
B.
C.,
D.,
参考答案:D略5.设0<α,β<,则α+β=是sin2α+sin2β=sin2(α+β)成立的(
)(A)充分不必要条件
(B)必要不充分条件(C)充要条件
(D)既不充分也不必要条件参考答案:C6.定义在上函数满足对任意,都有,记数列,有以下命题:①;②;③令函数,则;④令数列,则数列为等比数列.其中正确命题的为(
)A.①②③
B.①②
C.②③
D.①②③④参考答案:A略7.要得到的图象,只需将y=3sin2x的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位参考答案:C【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题.【分析】根据左加右减的原则进行左右平移即可.【解答】解:∵,∴只需将y=3sin2x的图象向左平移个单位故选C.【点评】本题主要考查三角函数的平移.三角函数进行平移时的原则是左加右减上加下减.8.函数是定义在上的奇函数,当时,得图象如图所示,那么不等式的解集是(
)
A.∪
B.∪(0,1)
C.(1,3)∪
D.∪(0,1)参考答案:D9.设f(x)是R上的偶函数,且在[0,+∞)上递增,若f()=0,f(logx)<0,那么x的取值范围是(
)A.<x<2 B.x>2 C.<x<1 D.x>2或<x<1参考答案:A【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)是R上的偶函数,∴f(x)=f(﹣x)=f(|x|),∴f(logx)=f(|logx|).∵f()=0,∴不等式f(logx)<0等价为f(|logx|)<f(),又∵函数f(x)在[0,+∞)上递增,∴|logx|<,得:<logx<,解得<x<2.故选A.【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行转化是解决本题的关键.10.化简的结果是(
)A.2π﹣9 B.9﹣2π C.﹣1 D.1参考答案:C【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;函数的性质及应用.【分析】根据根式的运算性质,可得答案.【解答】解:=|π﹣4|+π﹣5=4﹣π+π﹣5=﹣1,故选:C【点评】本题考查的知识点是根式的化简和计算,熟练掌握,是解答的关键.二、填空题:本大题共7小题,每小题4分,共28分11.已知α,β为锐角,若sinα=,cosβ=,则sin2α=,cos(α+β)=.参考答案:;﹣.【考点】三角函数的化简求值.【分析】利用同角三角函数的基本关系,二倍角公式、两角和的余弦公式,求得sin2α、cos(α+β)的值.【解答】解:∵已知α,β为锐角,若sinα=,cosβ=,∴则cosα==,sinβ==,∴sin2α=2sinαcosα=2?=,cos(α+β)=cosα?cosβ﹣sinαsinβ=﹣=﹣,故答案为:;﹣.12.如图是一个算法的程序框图,回答下面的问题;当输入的值为3时,输出的结果是_____.参考答案:813.已知函数的定义域是,且满足,如果对于,都有,则不等式的解集为
(表示成集合)参考答案:考点:利用函数性质解不等式【思路点睛】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系14.已知正三棱锥所有棱长均为,且四个顶点都在同一个球面上,则该球的表面积为
.参考答案:3π.15.不等式|2x﹣1|﹣|x+2|>0的解集为.参考答案:【考点】绝对值三角不等式.【分析】不等式可化为|2x﹣1|>|x+2|,两边平方整理可得(3x+1)(x﹣3)>0,即可得出不等式的解集.【解答】解:不等式可化为|2x﹣1|>|x+2|,两边平方整理可得(3x+1)(x﹣3)>0,∴x<﹣或x>3,∴不等式的解集为.故答案为:.16.计算:=
.参考答案:617.若奇函数f(x)在[1,3]上有最小值2,则它在[﹣3,﹣1]上的最大值是.参考答案:-2考点:函数奇偶性的性质.
专题:计算题;函数的性质及应用.分析:先根据奇函数的对称特征,判断函数在区间[﹣3,﹣1]上的最大值情况.解答:解:∵奇函数f(x),∴其图象关于原点对称,又f(x)在[1,3]上有最小值2,由对称性知:函数f(x)在[﹣3,﹣1]上的最大值是﹣2.故答案为:﹣2.点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、函数的最值及其几何意义等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知是定义在R上的偶函数,当时,,求在R上的解析式,并分别指出的增区间、减区间。(10分)参考答案:设,则,=,因是偶函数,所以,=。故在R上的解析式是…………6分;(2)增区间有:、;减区间有:,………………10分19.(12分)在锐角三角形中,分别是角所对的边,且.
(1)确定角的大小;
(2)若,且的面积为,求的值.参考答案:(1),由正弦定理20.如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC、AB的中点,已知=a,=b,试用a、b分别表示、、.参考答案:,,试题分析:以向量为基地表示平面内的向量、、.,主要利用向量加减法的三角形法则和平行四边形法则求解试题解析:由题意可知,考点:向量加减法及平面向量基本定理21.如图所示的韦恩图中,A、B是非空集合,定义A*B表示阴影部分集合.若x,y∈R,,B={y|y=3x,x>0},则A*B=()A.(2,+∞) B.[0,1)∪(2,+∞) C.[0,1]∪(2,+∞) D.[0,1]∪[2,+∞)参考答案:C【考点】Venn图表达集合的关系及运算.【专题】函数的性质及应用.【分析】先分别求出集合A和集合B,然后根据A*B表示阴影部分的集合得到A*B={x|x∈A或x∈B且x?A∩B},最后根据新定义进行求解即可.【解答】解:A={x|y=}=[0,2]B={y|y=3x,x>0}=[1,+∞)根据A*B表示阴影部分的集合可知A*B={x|x∈A或x∈B且x?A∩B}∴A*B={x|0≤x≤1或x>2}故选C.【点评】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力以及转化的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文书模板-新型智慧城市运行中心建设情况报告
- 元素与物质分类-2023年中考化学一轮复习(解析版)
- 济宁2024年统编版小学6年级上册英语第三单元真题
- 2024-2025学年江苏省镇江某中学高二(上)月考物理试卷(10月)(含答案)
- DB4107T 501-2024 知识产权保护中心服务规范 一般要求
- 五年级科学下册期末试题分类汇编:地表缓慢变化
- 2024年锅炉自控优化装置项目投资申请报告代可行性研究报告
- 2024年安全员C证考试100题及解析
- 纤维增强复合材料防眩格栅技术规范(征求意见稿)
- 幼儿园年终工作述职报告范文(30篇)
- T-BJCC 1003-2024 首店、首发活动、首发中心界定标准
- 2024年广东省出版集团数字出版有限公司招聘笔试参考题库含答案解析
- 机械原理课程设计全自动黑板擦方案
- 职业生涯规划数媒专业
- 新生儿肠胀气课件
- 顾客满意理念与技巧课件
- 付款条件与支付方式
- 数字化赋能绿色智能制造案例分析
- 新生儿常见问题及护理 课件
- 搜狗拼音输入法打字入门
- 【课件】+现实与理想-西方古典绘画+课件高中美术人美版(2019)美术鉴赏
评论
0/150
提交评论