




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
II卷非选择题(90分)填空题:本题共4小题,每小题5分,共20分。13.函数的值域是.14.在平面直角坐标系中,若直线被圆截得的弦长为,则实数的取值集合为__________.15.已知P为抛物线上不同于顶点的任意一点,过点P作y轴的垂线,垂足为点Q,点,则线段与线段长的和取得最小值时点P的坐标为_______.16.已知梯形ABCD中,,P是BC边上一点,且,当P在BC边上运动时,的最大值是___________三.解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)已知命题在时,不等式恒成立,命题函数是区间上的减函数,若命题“”是真命题,求实数的取值范围.18.(12分)已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)设直线经过点,且与圆相交所得弦长为,求直线的方程.19.(12分)已知A、B两地的距离是100km,按交通法规定,A、B两地之间的公路车速x应限制在60~120km/h,假设汽油的价格是7元/L,汽车的耗油率为,司机每小时的工资是70元(设汽车为匀速行驶),那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?20.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.21.(12分)如图,在多面体中,四边形是菱形,⊥平面且.(1)求证:平面⊥平面;(2)若设与平面所成夹角为,且,求二面角的余弦值.22.(12分)已知椭圆的长轴为,分别为椭圆C的左、右顶点,P是椭圆C上异于的动点,且面积的最大值为.(1)求椭圆C的方程;(2)过点的直线l交椭圆C于两点,D为椭圆上一点,O为坐标原点,且满足,其中,求直线l的斜率k的取值范围.2020年秋四川省叙州区第二中学高二第二学月考试理科数学参考答案1.C 2.B 3.D 4.C 5.D 6.D 7.A 8.A 9.D 10.D 11.A 12.B13. 14. 15. 16.17.时,不等式恒成立在上恒成立令则在上是减函数即若命题真,则又函数是区间上的减函数,即若命题真,则若命题“”是真命题,则有真假或假真或均为真命题若真假,则有若假真,则有若均为真命题,不存在综上可得的取值范围是.18.(Ⅰ)设圆的圆心坐标为,依题意,有,解得,所以,所以圆的标准方程为.(Ⅱ)依题意,圆的圆心到直线的距离为,(1)若直线的斜率不存在,则,符合题意,此时直线的方程为.(2)若直线的斜率存在,设直线的方程为,即,则,解得.此时直线的方程为综上,直线的方程为或.19.设总费用为则当时等号成立,满足条件故最经济的车速是,总费用为28020.(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=25.因为m为整数,故m=1.故所求圆的方程为(x﹣1)2+y2=25.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a2+1)x2+2(5a﹣1)x+1=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().(3)设符合条件的实数a存在,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2﹣4a=0,解得.由于,故存在实数使得过点P(﹣2,4)的直线l垂直平分弦AB.21.(1)证明:连结四边形是菱形,,⊥平面,平面,,,平面,平面,平面,平面⊥平面.(2)解:解法一:设,四边形是菱形,,、为等边三角形,,是的中点,,⊥平面,,在中有,,,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系如图所示,则所以,,设平面的法向量为,由得设,解得.设平面的法向量为,由得设,解得.设二面角的为,则结合图可知,二面角的余弦值为.解法二:∵EB⊥面ABCD,∴∠EAB即为EA与平面ABCD所成的角在Rt△EAB中,cos∠EAB=又AB=2,∴AE=∴EB=DF=1连接AC交BD于O,连接EO、FO菱形ABCD中,∠BAD=60°,∴BD=AB=2矩形BEFD中,FO=EO=,EF=2,EO²+FO²=EF²,∴FO⊥EO又AC⊥面BEFD,FO⊆面BEFD,∴FO⊥AC,AC∩EO=O,AC、EO⊆面AEC,∴FO⊥面AEC,又EC⊆面AEC,∴FO⊥EC过点F做FM⊥EC于M,连OM,又FO⊥EC,FM∩FO=F,FM、FO⊆面FMO,∴EC⊥面FMOOM⊆面FMO,∴EC⊥MO∴∠FMO即为二面角A-EC-F的平面角AC⊥面BEFD,EO⊆面BEFD,∴AC⊥EO又O为AC的中点,∴EC=AE=Rt△OEC中,OC=,EC=,∴OE=,∴OM=Rt△OFM中,OF=,OM=,∴FM=∴cos∠FMO=即二面角A-EC-F的余弦值为解法三:连接AC交BD于O,连接EO、FO菱形ABCD中,∠BAD=60°,∴BD=AB=2矩形BEFD中,FO=EO=,EF=2,EO²+FO²=EF²,∴FO⊥EO又AC⊥面BEFD,FO⊆面BEFD,∴FO⊥AC,AC∩EO=O,AC、EO⊆面AEC,∴FO⊥面AEC又∵EB⊥面ABCD,∴∠EAB即为EA与平面ABCD所成的角在Rt△EAB中,cos∠EAB=又AB=2,∴AE=∴EB=DF=1在Rt△EBC、Rt△FDC中可得FC=EC=在△EFC中,FC=EC=,EF=2,∴在△AEC中,AE=EC=,O为AC中点,∴OE⊥OC在Rt△OEC,OE=,OC=,∴设△EFC、△OEC在EC边上的高分别为h、m,二面角A-EC-F的平面角设为θ,则cosθ=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 证婚词致辞七篇
- 开发智能教育游戏化工具的方法与案例
- 2025物业管理合同的法律规定和保障措施
- 社交媒体内容版权纠纷处理基础知识点归纳
- 2025合同范本电梯设备租赁合同协议书示例
- 2025年出口合同审查模板示例
- 永州职院单招考试试题及答案
- 2025年关于合同解除的法律效力
- 2025培训机构股份转让合同示范文本
- 音乐教师考试试题及答案
- 2022年四川省自贡市中考英语试题
- SJG 74-2020 深圳市安装工程消耗量定额-高清现行
- 6.项目成员工作负荷统计表
- 罗斯308父母代种鸡饲养管理要点
- 自动扶梯、自动人行道安全装置测试记录
- 建设工程质量成本管理课件
- 绿色施工管理体系及管理制度汇编
- DB33∕T 2357-2021 未来社区商业建设及运营规范
- 工学结合一体化课程教学设计的编写(课堂PPT)
- 四大管道标准学习20130814-沧州
- 施耐德公司品牌战略
评论
0/150
提交评论