材料第四章高聚物的结构课件_第1页
材料第四章高聚物的结构课件_第2页
材料第四章高聚物的结构课件_第3页
材料第四章高聚物的结构课件_第4页
材料第四章高聚物的结构课件_第5页
已阅读5页,还剩249页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一节高聚物的合成2.1加成反应

烯类单体通过双键打开发生的加成聚合反应。反应活性中心-----自由基聚合;离子聚合大多属于连锁聚合。

连锁聚合反应通常由链引发、链增长和链终止等基元反每一步的速度和活化能相差很大。

阳离子聚合阴离子聚合配位聚合第四章高聚物的结构

聚合过程中有时还会发生链转移反应,但不是必须经过的基元反应。

引发剂分解成活性中心时,共价键有两种裂解形式:均裂和异裂。均裂的结果产生两个自由基;异裂的结果形成阴离子和阳离子。自由基、阴离子和阳离子均有可能作为连锁聚合的活性中心,因此有自由基聚合、阴离子聚合和阳离子聚合之分。烯类单体的碳—碳双键既可均裂,也可异裂,因此可进行自由基聚合或阴、阳离子聚合,取决于取代基的诱导效应和共轭效应。乙烯分子中无取代基,结构对称,因此无诱导效应和共轭效应。只能在高温高压下进行自由基聚合,得到低密度聚乙烯。在配位聚合引发体系引发下也可进行常温低压配位聚合,得到高密度聚乙烯。

分子中含有推电子基团,如烷基、烷氧基、苯基、乙烯基等,碳—碳双键上电子云增加,有利于阳离子聚合进行。

丙烯分子上有一个甲基,具有推电子性和超共轭双重效应,但都较弱,不足以引起阳离子聚合,也不能进行自由基聚合。只能在配位聚合引发体系引发下进行配位聚合。

其他含有一个烷基的乙烯基单体也具有类似的情况。

1,1取代的异丁烯分子中含有两个甲基,推电子能力大大增强,可进行阳离子聚合,但不能进行自由基聚合。含有烷氧基的烷氧基乙烯基醚、苯基的苯乙烯、乙烯基的丁二烯均可进行阳离子聚合。

结论:

含有1,1-双烷基、烷氧基、苯基和乙烯基的烯烃因推电子能力较强,可进行阳离子聚合。

卤素原子既有诱导效应(吸电子),又有共轭效应(推电子),但两者均较弱,因此既不能进行阴离子聚合,也不能进行阳离子聚合,只能进行自由基聚合。如氯乙烯、氟乙烯、四氟乙烯均只能按自由基聚合机理进行。除了少数含有很强吸电子基团的单体(如偏二腈乙烯、硝基乙烯)只能进行阴离子聚合外,大部分含吸电子基团的单体均可进行自由基聚合。含有共轭双键的烯类单体,如苯乙烯、α-苯乙烯、丁二烯、异戊二烯等,因电子云流动性大,容易诱导极化,因此既可进行自由基聚合,也可进行阴、阳离子聚合。结论:

乙烯基单体对离子聚合有较强的选择性,但对自由基聚合的选择性很小,大部分烯类单体均可进行自由基聚合。

取代基对乙烯基单体聚合机理的影响如下:

表2—1常见烯类单体的聚合类型续表单体聚合类型中文名称分子式自由基阴离子阳离子配位氟乙烯CH2=CHF⊕四氟乙烯CF2=CF2⊕六氟丙烯CF2=CFCF3⊕偏二氟乙烯CH2=CF2⊕烷基乙烯基醚CH2=CH—OR⊕醋酸乙烯酯CH2=CHOCOCH3⊕丙烯酸甲酯CH2=CHCOOCH3⊕++甲基丙烯酸甲酯CH=C(CH3)COOCH3⊕++丙烯腈CH2=CHCN⊕+偏二腈乙烯CH2=C(CN)2⊕硝基乙烯CH2=CHNO2⊕

1,2双取代的烯类化合物,因结构对称,极化程度低,位阻效应大,一般不能聚合。但有时能与其他单体共聚,如马来酸酐能与苯乙烯共聚。三取代、四取代的烯类化合物一般不能聚合,但氟代乙烯例外。例如:氟乙烯、1,1-二氟乙烯、1,2-二氟乙烯、三氟乙烯、四氟乙烯均可聚合。不论氟代的数量和位置,均极易聚合。原因:

氟原子半径较小,仅大于氢原子,不会造成空间位阻。取代基X取代基半径/nm一取代二取代三取代四取代1,1-取代1,2-取代H0.032+++F0.064+++++Cl0.099++---CH30.109++---Br0.114++---I0.133+----C6H50.232+----表2—2乙烯基单体取代基的体积与数量对聚合特性的影响*碳原子半径:0.075nm2.3自由基聚合机理考察自由基聚合有两个重要指标:聚合速率和分子量。为了弄清楚这两个指标的影响因素和控制方法,就必须从自由基聚合的机理入手。2.3.1自由基聚合的基元反应1)链引发反应形成单体自由基活性种的反应。引发剂、光能、热能、辐射能等均能使单体生成单体自由基。b.单体自由基的形成

由初级自由基与单体加成产生,为放热反应,活化能低,反应速度快。

E=20~34kJ/mol(2—3)链引发包含第二步,因为这一步反应与后继的链增长反应相似,有一些副反应可以使某些初级自由基不参与单体自由基的形成,也就无法链增长。2)链增长反应链引发反应产生的单体自由基具有继续打开其它单体π键的能力,形成新的链自由基,如此反复的过程即为链增长反应。

两个基本特征:(1)放热反应,聚合热约55~95kJ/mol。(2)链增长反应活化能低,约为20~34kJ/mol,反应速率极高,在0.01~几秒钟内聚合度就可达几千至几万,难以控制。因此,在自由基聚合反应体系内,往往只存在单体和聚合物两部分,不存在聚合度递增的一系列中间产物。(2)以头—尾方式结合时,空间位阻要比头—头方式结合时的小,故有利于头尾结合。虽然电子效应和空间位阻效应都有利于生成头尾结构聚合物,但还不能做到序列结构上的绝对规整。从立体结构来看,自由基聚合物分子链上取代基在空间的排布是无规的,因此聚合物往往是无定型的。3)链终止反应链自由基失去活性形成稳定聚合物的反应。可以分为偶合终止和歧化终止。

偶合终止:两个链自由基头部的独电子相互结合成共价键,生成饱和高分子的反应。生成的高分子两端都有引发剂碎片,聚合度为链自由基重复单元数的两倍。

歧化终止:链自由基夺取另一个自由基上的氢原子或其他原子而相互终止的反应。此时生成的高分子只有一端为引发剂碎片,另一端为饱和或不饱和结构,两者各半,聚合度与链自由基中的单元数相同。4)链转移反应链自由基从单体、溶剂、引发剂、大分子上夺取原子而终止,而失去原子的分子成为自由基继续新的增长,使聚合反应继续进行的过程,称为“链转移反应”。

向低分子转移的结果是使聚合物相对分子质量降低。链自由基可从已形成的大分子上夺取原子而转移,结果是形成支链型大分子。

链转移反应不是自由基聚合必须经过的基元反应,但具有十分重要的意义。(3)单体浓度随聚合时间逐步降低,聚合物浓度逐步提高(图2—2)。延长聚合时间是为了提高单体转化率。(4)少量阻聚剂(0.01~0.1%)足以使自由基聚合终止。图2—1自由基聚合中分子量与时间的关系图2—2自由基聚合中浓度与时间的关系2缩聚反应2.1缩合反应

在有机化学中,典型的缩合反应如醋酸和乙醇的酯化反应。除了得到主产物醋酸乙酯外,还有副产物水。

反应物分子中能参与反应的官能团数称为官能度。醋酸和乙醇中都只有一个能参与反应的官能团,因此都是单官能团物质。上述体系称为1—1官能度体系。

单官能度的丁醇和二官能度的邻苯二甲酸酐进行酯化反应,产物为低分子邻苯二甲酸二丁酯,副产物为水。单官能度的醋酸与三官能度的甘油进行酯化反应,产物为低分子的三醋酸甘油酯,副产物为水。只要反应体系中有一种原料是单官能度物质,无论其他原料的官能度为多少,都只能得到低分子产物。2.2缩聚反应

若参与反应的物质均为二官能度的,则缩合反应转化为缩聚反应。以二元羧酸与二元醇的聚合反应为例。当一分子二元酸与一分子二元醇反应时,形成一端为羟基,一端为羧基的二聚物;二聚物可再与二元酸或二元醇反应,得到两端均为羟基或均为羧基的三聚体,也可与二聚体反应,得到四聚体;三聚体既可与单体反应,也可与二聚体或另一种三聚体反应,如此不断进行,得到高分子量的聚酯。

。。。。。。链增长停止1.体系年度增大,低分子不出去2.原料配比非当量比3.改变反应条件如反应温度反应程度和平衡条件是影响线形缩聚物聚合度的重要因素,但不能用作控制分子量的手段因为缩聚物的分子两端仍保留着可继续反应的官能团控制方法:端基封锁在两官能团等当量的基础上例:

对苯二甲酸与乙二醇反应得到涤纶树脂;己二胺与己二酸反应得到聚酰胺—6,6;双酚A与光气反应得到聚碳酸酯;氨基酸自身聚合得到聚酰胺。

缩聚反应常用的官能团:—OH、—COOH、—NH2、—COX(酰卤)、—COOR(酯基)、—OCOCO—(酸酐)、—H、—X、—SO3H、—SO2Cl等。基本特征:(1)聚合反应是通过单体功能基之间的反应逐步进行的;(2)每步反应的机理相同,因而反应速率和活化能相同;(3)反应体系始终由单体和分子量递增的一系列中间产物组成,单体及任何中间产物两分子间都能发生反应;(4)聚合产物的分子量是逐步增大的,(5)反应中有小分子脱出。

聚合体系中任何两分子(单体或聚合物分子)间都能相互反应生成聚合度更高的聚合物分子。

2—2官能度体系聚合得到线型聚合物;2—f(f>2)官能度体系聚合得到支链型或体型聚合物。

缩聚反应的单体转化率、产物聚合度与反应时间关系示意图:单体转化率产物聚合度反应时间

根据平衡常数的大小,可将缩聚反应分为三类:①平衡常数很小,如聚酯化反应,K≈4,低分子副产物对分子量有很大影响;②平衡常数中等,如聚酰胺化反应,K≈300~400,低分子副产物对分子量有一定影响;③平衡常数很大,K>1000,实际上可看作不可逆反应,如光气法制备聚碳酸酯。

逐步特性是所有缩聚反应共有的,可逆平衡的程度则各类缩聚反应有明显差别。卡罗瑟斯小传(Wallace

HumeCarothers)(1896~1937)1896年4月27日生于艾奥瓦州伯灵顿,

1920年在密苏里的塔基欧学院毕业;1921年在伊利诺伊大学获硕士学位;1924年在伊利诺伊大学获有机化学博士学位。在该校任教两年后到哈佛大学任教。1928年起,在美国杜邦公司任职9年,领导基础有机化学的研究工作。1936年当选为美国科学院院士。1937年4月29日在美国费城一家饭店的房间里饮用了掺有氰化钾的柠檬汁而自杀身亡。

主要成果:1.合成出氯丁二烯及其聚合物。2.以己二酸与己二胺为原料制得

尼龙—66。一生中发表过60多篇论文和取得近70项专利。

弗洛里小传(PaulJ.Flory)

(1910-1985)1910年6月19日生于伊利诺伊州斯特灵;1934年在俄亥俄州州立大学获物理化学博士学位,后任职于杜邦公司,进行高分子基础理论研究;1948年在康奈尔大学任教授;1953年当选为美国科学院院士;1957年任梅隆科学研究所执行所长;1961年任斯坦福大学化学系教授;1974年获诺贝尔化学奖。1975年退休;1985年9月9日逝世。在高分子物理化学方面的贡献,几乎遍及各个领域。既是实验家又是理论家,是高分子科学理论的主要开拓者和奠基人之一。著有《高分子化学原理》和《长链分子的统计力学》等。1-3高分子链的构型1-3-1立体化学在高分子中的表现

构型——分子中由化学键所固定的原子在空间的几何排列。要改变构型必须经过化学键的断裂和重组。立体异构的分类几何异构——内双键上的基团在双键两侧排列方式不同而引起的异构(因为内双键中键是不能旋转的)。例如

因为双键上一个C原子上连接二个相同的H,翻个身是同样的化合物。根据定义只有内双键才有顺反异构。支化度的表征支化度——两相邻支化点之间链的平均分子量来表示支化的程度,称为支化度支化高分子的形式:星形(Star)、梳形(Comb)、无规(Random)1-4-3网状(交联)大分子缩聚反应中有三个或三个以上官能度的单体存在时,高分子链之间通过支链联结成一个三维空间网形大分子时即成交联结构交联与支化有本质区别支化(可溶,可熔,有软化点)交联(不溶,不熔,可膨胀)交联高分子的表征交联度:用相邻两个交联点之间的链的平均分子Mc来表示。支联度越大,Mc越小。交联点密度:交联的结构单元占总结构单元的分数,即每一结构单元的交联几率。应用:橡胶硫化就是在聚异戊二烯的分子间产生硫桥应用另外一种交联PE,它是经过辐射交联,使得软化点和强度均大大提高,大都用于电气接头,电缆的绝缘套管等除无规交联外,还有规整的网络结构,如:耐高温的全梯型吡隆,耐高温的碳纤维。线型、支化、网状分子的性能差别线型分子:可溶,可熔,易于加工,可重复应用,一些合成纤维,“热塑性”塑料(PVC,PS等属此类)支化分子:一般也可溶,但结晶度、密度、强度均比线型差网状分子:不溶,不熔,耐热,耐溶剂等性能好,但加工只能在形成网状结构之前,一旦交联为网状,便无法再加工,“热固性”塑料(酚醛、脲醛属此类)立体异构的分类空间立构——若正四面体的中心原子上四个取代基是不对称的(即四个基团不相同)。此原子称为不对称C原子,这种不对称C原子的存在会引起异构现象,其异构体互为镜影对称,各自表现不同的旋光性,故称为旋光异构。小分子大分子:有不对称碳原子,所以有旋光异构

三种键接方式全是由一种旋光异构单元键接而成(全同立构)——取代基全在平面的一侧由两种旋光异构单元间接键合而成(间同立构)——取代基间接分布在平面两侧由两种旋光异构单元无规则键合而成(无规立构)——取代基无规则分布在平面两侧1-3-2举例说明1.—单烯2.双烯类:丁二烯3.异戊二烯分子的立体构型不同,导致材料性能差异PS:

等规PS:规整度高,能结晶,℃,不易溶解无规PS:软化点80℃,溶于苯PP:等规PP:℃,坚韧可纺丝,也可作工程塑料无规PP:性软,无实际用途立体构型表征

等规度(tacticity)——全同立构与间同立构之和所占百分比立体构型的测定方法(几个纳米)

X射线、核磁共振(NMR)、红外光谱(IR)等方法键接异构1-4高分子链的支化与交联

大分子链的形式有:线型(linear)支化(branching)网状(network)1-4-1线型大分子链

一般高分子是线型的。它是由含二官能团的反应物反应的,如前所述的聚氯乙烯和聚酯,分子长链可以卷曲成团,也可以伸展成直线,这取决于分子本身的柔顺性及外部条件。线型高分子间无化学键结合,所以在受热或受力情况下分子间可以互相移动(流动),因此线型高分子可在适当溶剂中溶解,加热时可熔融,易于加工成型。1-4-2支链形高分子由于加聚过程中有自由基的链转移发生,常易产生支化高分子。支化分子对高分子材料的使用性能有一定的影响

下面以PE为例以PE为例LDPE(LowDensityPE)(自由基聚合)这种聚合方式易发生链转移,则支链多,密度小,较柔软。用于制食品袋、奶瓶等等HDPE(配位聚合,Zigler催化剂)这种聚合方法不同与前,获得的是几乎无支链的线型PE,所以密度大,硬,规整性好,结晶度高,强度、刚性、熔点均高。可用作工程塑料部件,绳缆等等支化度越高,支链结构越复杂则对性能的影响越大,例如无轨支化往往降低高聚物薄膜的拉伸度,以无规支化高分子制成的橡胶其抗拉强度及伸长率均比线型分子制成的橡胶为差。支化度的表征支化度——两相邻支化点之间链的平均分子量来表示支化的程度,称为支化度支化高分子的形式:星形(Star)、梳形(Comb)、无规(Random)短链和长链支化高分子1-4-3网状(交联)大分子缩聚反应中有三个或三个以上官能度的单体存在时,高分子链之间通过支链联结成一个三维空间网形大分子时即成交联结构交联与支化有本质区别支化(可溶,可熔,有软化点)交联(不溶,不熔,可膨胀)交联高分子的表征交联度:用相邻两个交联点之间的链的平均分子Mc来表示。支联度越大,Mc越小。交联点密度:交联的结构单元占总结构单元的分数,即每一结构单元的交联几率。应用:橡胶硫化就是在聚异戊二烯的分子间产生硫桥应用另外一种交联PE,它是经过辐射交联,使得软化点和强度均大大提高,大都用于电气接头,电缆的绝缘套管等除无规交联外,还有规整的网络结构,如:耐高温的全梯型吡隆,耐高温的碳纤维。线型、支化、网状分子的性能差别线型分子:可溶,可熔,易于加工,可重复应用,一些合成纤维,“热塑性”塑料(PVC,PS等属此类)支化分子:一般也可溶,但结晶度、密度、强度均比线型差网状分子:不溶,不熔,耐热,耐溶剂等性能好,但加工只能在形成网状结构之前,一旦交联为网状,便无法再加工,“热固性”塑料(酚醛、脲醛属此类)1-5共聚物(copolymer)如果高分子由两种以上的单体组成,则高分子链的结构更加复杂将有序列分布问题

两种或多种单体共聚时,结构单元之间连接的序列结构更为复杂。具体可分为无规共聚、交替共聚、接枝共聚、嵌段共聚等。1-5-1无规共聚(random)两种高分子无规则地平行联结

ABAABABBAAABABBAAA由于两种高分子平行无规则地排列改变了结构单元的相互作用,也改变了分子间的相互作用,因此在溶液性质、结晶性质、力学性质方面和均聚物有明显不同。例1:

PE,PP是塑料,但乙烯与丙烯无规共聚的产物为橡胶。例2:PTFE(聚四氟乙烯)是塑料,不能熔融加工,但四氟乙烯与六氟丙烯共聚物是热塑性的塑料。1-5-2嵌段共聚(block)AAAAAABBBBBAAABBBBAAAAA

例如用阴离子聚合法制得的SBS树脂(牛筋底)就是苯乙烯与丁二烯的嵌聚共聚物,其分子链的中段是聚丁二烯(顺式),两端是聚苯乙烯。SBS:在120℃可熔融,可用注塑成形,冷到室温时,由于PS的玻璃化转变温度高于室温,分子两端的PS变硬,而分子链中间部分PB的玻璃化转变温度低于室温,仍具有弹性,显示高交联橡胶的特性。SBS不是用化学键交联,而是通过玻璃态PS“交联”的,这是物理交联。顺式聚丁二烯在常温下是一种橡胶,而不是硬性塑料,两者是不相容的,因此SBS具有两相结构:聚丁二烯(PB)易形成连续的橡胶相,PS易形成微区分散区树脂中,它对PB起着交联的作用,PS是热型性的(thermoplastic),在高温下能流动,SBS是一种可用注塑方法进行加工而不需要硫化的橡胶,又称为热塑性弹性体(牛筋底),这是橡胶工业上一个重大进步。1-5-3接枝共聚(graft)ABS树脂(acrylonitrile-butadiene-styrene)是丙烯腈、丁二烯和苯乙烯的三元共聚物,共聚方式上是无规与接枝共聚相结合。ABS可以是以丁苯橡胶为主链,将苯乙烯和丙烯腈接在支链上;也可以以丁睛橡胶为主链,将苯乙烯接在支链上;也可以以苯乙烯—丙烯睛为主链,将丁二烯和丙烯腈接在支链上。ABS兼有三种组分的特性:丙烯腈有CN基,使聚合物耐化学腐蚀,提高抗张强度和硬度;丁二烯使聚合物呈现橡胶态韧性,提高抗冲性能;苯乙烯的高温流动性好,便于加工成型,而且可以改善制品光洁度。1-5-4交替共聚(alternating)ABABABAB共聚物往往可改善高聚物某种使用性能

PMMA分子中的酯基有极性,使分子与分子间的作用力比PS大,所以流动性差,不易注塑成型。MMA+S共聚,改善高温流动性,可注塑成型。S+AN冲击,耐热,耐化学腐蚀都有提高,可作耐油的机械零件。1-5-5共聚物结构的表征平均组成:化学法(元素分析,官能团沉淀),光谱法(红外,紫外…)。组成分布(GPC法)。序列结构(无规共聚物):例如A和B两种单体相邻二单元有3种链接方式(AA、BB、AB),相邻三单元则有(AAA、BBB、AAB、ABB、ABA、BAB)6种方式链接。化学组成

单体单元键合

近程结构

单个高分子链的键接(交联与支化)

单体单元主体构型(空间排列)

高分子链结构

高分子的大小(分子量)

远程结构

高分子的形态(构象)

晶态(Crystalline)

非晶态(Non—crystalline)

高分子聚集态结构取向态(orientatim)

液晶态(Liquidcrystals)

织态(texture)第二节高分子的远程结构

(long-rangestructure)

远程结构的内容包括:

1.高分子的形态(morphology),或叫构象(conformation)

2.高分子的大小,即分子量及其分布2-1高分子链的柔顺性(flexibility)

一个典型的线形高分子链长度与直径之比是很大的。例如聚异丁烯大分子所以。这就是说,这个大分子长度是直径的5万倍。这样一根细而长的“网丝”,在无外力作用下,不可能是一条直线,而是自然的曲线。这就使得聚异丁烯大分子有着“柔顺性”,也使聚异丁烯材料有着它独特的“高弹性”。从结构上看,是什么根本原因使得高分子有柔顺性呢?我们要从低分子讲起。2-2-1低分子的内旋转从有机中知,C—C,C—O,C—N等单键是键,其电子云的分布是轴形对称的。因此由键相连的两个原子可以相对旋转(内旋转)而不影响其电子云的分布。单键内旋转的结果是使分子内与这两个原子相连的原子或基团在空间的位置发生变化例如乙烷:如果C—C发生内旋转,则分子内与C相连的H的相对位置就要发生变化(如下图)这种由于单键内旋转而产生的分子在空间的不同形态称为构象(conformation)HCHCCCHHHHHHHHHH迭同式(顺式)构象最不稳定交叉式(反式)构象最稳定或或视线在C-C键方向两个C原子上的C-H键重合时叫顺式,相差60度角时叫反式。时为顺式,位能最高。时为反式,乙烷分子位能最低。如下图:顺式反式位能(度)060120180240300360乙烷的内旋转位能图位垒:从一种构象改变为另一种构象时,能量的差值称为内旋转位垒。内旋转位垒越高,内旋转越困难。由于反式构象能量最低,所以1,2-二氧乙烷在晶体时绝大部分是反式构象。XZY⑴⑶⑵C1C4C3C2一.理想情况下a.碳链上不带有任何其它原子或基团时,C-C单键旋转是没有位阻效应,C-C单键的内旋转完全是自由的,如上图所示。b.如果我们把C1-C2键固定在Z轴上,则(1)的自转(内旋转)将带动(2)的公转,由于有C-C和C-C之间键角的限制,所以(2)的轨迹是个圆锥面,所以C3可以出现在这个圆锥面的任何位置上。一.理想情况下c.同理(2)的自转,带动(3)的公转,(3)的轨迹也是圆锥面,C4可以出现在圆锥面的任何位置上。d.事实上,(1)和(2)同时自转,所以(2)和(3)同时在公转,所以,(4)的活动余地就更大了。e.一个高分子有许多单键,每个单键都能内旋转,所以高分子在空间的形态有无穷多个。①(1)键自转带动(2)键公转,(2)键的轨迹是圆锥面,C3可在圆锥面上出现的位置假定为m个。

②(2)键自转带动(3)键公转,(3)键的轨迹同样是圆锥面,C4可在圆锥面上出现的位置假定也为m个。

③当只考虑(2)自转、不考虑它公转时,则C4有m个位置可出现,如果也考虑(2)的公转,则C4就有m2个位置可出现。

④以此类推,对于第i键上的第i+1个原子来讲,如果考虑所有键的公转和自转,则他它上面的原子的出现位置是mi-1个。第(2)键上(C3)出现的位置为m2-1=m

第(3)键上(C4)出现的位置为m3-1=m2

第(4)键上(C5)出现的位置为m4-1=m3

……

第(i)键上(Ci+1)出现的位置为

二.实际上内旋转完全自由的C-C单键是不存在的,因为碳键上总要带有其它原子或基团,当这些原子或基团充分接近时,电子云之间将产生斥力使单键的内旋转受到阻力,所以高分子的形态(构象)也不可能是无穷多的,而是相当多的三.“链段”的概念把高分子链想象为一根摆动着的绳子,它是有许多可动的段落连接而成的,由前面所讲的分析可推想,当i足够大时,链中第i+1个键上的原子在空间可取的位置已与第一个键完全无关了。所以长链可以看作是由许多链段组成,每个链段包括i个键。链段之间可看成是自由连接的,它们有相对的运动独立性,不受键角限制。链段的定义高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。所以高分子链上单键数目越多,内旋转越自由,则高分子链的形态(构象)越多,链段数也越多,链段长度越小,链的柔顺性越好。高分子的柔顺性的实质高分子的柔顺性的实质就是大量C-C单键的内旋转造成的。极端情况:当高分子链上每个键都能完全自由旋转(自由联接链),“链段”长度就是键长——理想的柔性链(不存在)。当高分子链上所有键都不能内旋转——理想的刚性分子(不存在),“链段”长度为链长。2-2高分子链的柔顺性的定量描述和构象统计理论2-2-1柔顺性的定量描述:由于高分子链的内旋转情况复杂,不能像小分子一样用位能的数据来表示柔顺性

1.大分子链尺寸的表示方法表征方法很多,常用的有三种:

“链段”长

主要介绍前两种

均方旋转半径1)均方末端距(线型分子)(meansquareendtoenddistance)当分子是实心球时,可用球半径表示其尺寸。

当分子是细杆,可用杆长和截面半径来表征其尺寸。当分子是瞬息万变的无规线团状的高分子时,我们可用方均根末端距来表示分子尺寸,如下图:理解:末端距——线型高分子链的一端到另一端达到的直线距离。这是一个向量,高分子链愈柔顺、卷曲愈厉害,愈小。均方末端距——由于构象随时在改变,所以末端距也在变化,只好求平均值,但由于方向任意,所以平均值必为零,没有意义。所以先将平方再平均,就有意义了,这是一个标量。2)均方旋转半径(支化分子)对于支化聚合物大分子来讲,一个分子有若干个端基。这样均方末端距的意义就不明确了,所以引入新的表征方式(旋转半径)——从大分子链的质量中心到各个链段的质量中心的距离,是向量(均方旋转半径)——旋转半径的平方值的平均。是标量,越小越柔顺

Z——高分子链的链段总数

箭头末端——每个链段的质量中心

——大分子链的质量中心

——大分子质量中心到第i个质点的距离线形链支化链3)“链段”长度“链段”长度——即一个链段包含的链节数。链段长度越小,链越柔顺。2.柔顺性的表示法大分子链的尺寸已有了表示方法,则可用它来表示链的柔顺性。当两种高分子的链长相同时,则越小者,其链越柔顺。当两种高分子的链长不同时,可用下面几个物理量作为链柔顺性的量度:(1)空间位阻参数(刚性因子)空间位阻参数(刚性因子)——无扰均方末端距:在θ条件下实测的高分子的均方末端距。它是高分子本身结构的反映,不受溶剂分子的干扰。——自由旋转链的均方末端距:假定该高分子的单键能进行自由内旋转(没有空间位阻)时所对应的均方末端距。σ实质上是实测值与自由旋转均方末端距的比较,σ越大,空间位阻越大,柔顺性越小;反之柔顺性越大。θ条件由于分子的均方末端距是单个分子的尺寸,必须把高分子分散在溶液中才能进行测定,这又产生了问题。因为高分子与溶剂之间的相互作用对高分子链的构象产生干扰,如果在良溶剂中,链会伸展,如果在不良溶剂中,链会收缩。θ条件这种干扰使所得的结果不能真实地反映高分子本身的性质,不过,这种干扰的程度随溶剂和温度的不同而不同,因此,可以选择合适的溶剂和温度,创造一种特定的条件,使溶剂分子对高分子构象所产生的干扰可以忽略不计,这样的条件叫θ条件。在θ条件下测得的高分子的尺寸称无扰尺寸。只有无扰尺寸才是高分子本身结构的反映。(2)分子无扰尺寸分子无扰尺寸(特征比)

M——分子量A越小,分子越柔顺(3)链段长度链段长度也可用来表示柔顺性2-2-2构象统计理论(自学)

评价高分子的柔顺性问题转化为计算高分子链的末端距问题

1.用几何法求高分子链尺寸(矢量求和)求高分子链尺寸几何法计算自由结合链和自由旋转链的均方末端距2.统计方法计算高分子链尺寸2-3影响高分子链柔性的结构因素2-3-1主链结构主链结构对高分子链柔性影响很显著①主链完全由C-C键组成的碳链高分子都具有较大的柔性。如PE,PP。②杂链高分子中C-O,C-N,Si-O等单键的内旋转位垒都比C-C的小,构象转化容易,构象多,所以柔性好。2-3-1主链结构柔性高分子链

低温下仍能使用的特种橡胶2-3-1主链结构③主链上带有内双键的高分子,如果不是共轭双键,则尽管双键本身不能内旋转,但与之邻接的单键却更容易内旋转。因为连在双键上的原子或基团数较单键数为少,而非键合原子间距离却比单键情况下要远,所以相互作用力减小,内旋转的阻力小。因此单元中含有内双键的聚合物如聚丁二烯、聚异戊二烯等分子链都具有较好的柔性链。(橡胶)2-3-1主链结构④主链上带有共轭双键的高分子或主键上带有苯环的高分子链,则分子的刚性大大提高,柔性则大大下降。因为共轭双键的Π电子云没有轴对称性,因此带共轭双键的高分子链不能内旋转,整个高分子链是一个大Π共轭体系。高分子链成为刚性分子。2-3-2取代基(极性和非极性)1.极性取代基引进的结果是增加分子内侧分子间(基团间)的相互作用,降低柔性。

a取代基极性↑,柔性↓1.极性取代基b.取代基在高分子链上分布的密度↑,则柔性↓

氯化聚乙烯柔性(氯原子密度小)>聚氯乙烯(PVC)(氯原子密度大)

1.极性取代基c.取代基在主键上的分布如果有对称性,则比不对称性的柔性好。因为二个对称侧基使主链间距增大,减小作用力。

2.非极性取代基非极性取代基对柔性的影响二方面因素:一方面,取代基的存在增加了内旋转时的空间位阻,使内旋转困难,使柔性↓。另一方面,取代基的存在又增大了分子间的距离,削弱了分子间作用力,使柔性↑。最终的效果将决定于哪一方面的效应起主要作用。2-3-3氢键的作用分子间的作用力随着主链或侧基的极性增加而增加。但如果分子内或分子间有氢键生成,则氢键的影响要超过任何极性基团,可大大增加分子的刚性。2-3-3氢键的作用例如:聚酰胺类,分子与分子之间可生成氢键,结果排列规整,甚至形成结晶,在晶区中,分子构象无法改变。又如:纤维素中能生成内氢键链刚硬蛋白质采取双螺旋构象,螺圈之间的氢键相连,刚性越大。2-3-4分子链的规整性分子结构愈规整,则结晶能力愈强,而高分子一旦结晶,则柔顺性大大↓,因为分子中原子和基团都被严格固定在晶格上,内旋转变得不可能。例如:聚乙烯,分子链本身是柔性的,但因规整性好,易结晶。所以材料不是橡胶而是塑料。又如:无规立构聚乙烯:柔性好。等规立构聚乙烯:结晶,所以刚性好,是塑料。

2-3-5分子链的长短如果分子链很短,可以内旋转的单链数目很少,分子的构象数也很少,则必然刚性。小分子物质都无柔性,就是此原因。但当分子量增大到一定限度(104)也就是:当分子的构象数服从统计规律时,则分子量对构象的影响就不存在了。2-3-6外界因素对柔性影响

1)温度:T↑,柔性↑例如顺丁橡胶:常温:橡胶柔软低温(-70~-120℃):橡胶硬而脆2)外力:外力作用时间长,柔性容易显示;外力作用时间短,柔性显示不出来,分子表现僵硬3)溶剂(以后详细讲述)1.4高分子的相对分子质量及其分布1.4.1高分子的相对分子质量与性能间的关系

小分子化合物没有机械强度,而高分子通常具有较高的机械强度。显然,材料的机械性能随着相对分子质量的增加逐渐提高。图1—1为高分子的机械性能与相对分子质量间的一般关系。图1—1高分子聚合度与机械性能之间的关系

由图1—1可见,当聚合度低于30时,基本上没有机械强度;当聚合度大于400左右时,机械强度不再随聚合度的增加而上升。相对分子质量提高,有利于材料的机械性能发展。但过高的相对分子质量,导致材料熔融时的粘度较大,不利于材料的加工。重要概念:

在满足材料的机械性能的前提下,高分子的相对分子质量应尽可能小一些,以有利于材料的加工。塑料相对分子质量/万纤维相对分子质量/万橡胶相对分子质量/万HDPE6~30涤纶1.8~2.3天然橡胶20~40PVC5~15尼龙-661.2~1.8丁苯橡胶15~20PS10~30维尼纶6~7.5顺丁橡胶25~30PC2~6纤维素50~100氯丁橡胶10~12表1—1常见聚合物的相对分子质量1.4.2高分子的平均相对分子质量

聚合物是由相对分子质量不等的同系物组成的混合物,存在多分散性。因此常用平均相对分子质量来表示。根据统计方法不同,平均相对分子质量可分为数均分子量、质均分子量、Z均分子量、粘均分子量。其中尤以数均分子量最为常用。(1)数均分子量按数量平均的相对分子质量,定义为某体系的总质量m为分子总数所平均的结果。体系中低分子量部分对数均分子量由较大影响。数均分子量通常由渗透压、蒸汽压、沸点升高等依数法测定。(1—4)(2)质均分子量按质量平均的相对分子质量。体系中高分子量部分对质均分子量由较大影响。质均分子量通常由光散射法测定。(1—5)(3)Z均分子量按Z量平均的相对分子质量。Z量的定义为miMi。Z均分子量通常由离心沉淀法测定。(1—6)(4)粘均分子量

用粘度法测定的相对分子质量称为粘均分子量。

式中α是高分子稀溶液特性粘数—分子量关系式中的指数,一般在0.5~0.9之间。(1—7)以上几种平均分子量之间的大小关系为:

非常容易记忆的关系!!>>>1.4.3高分子的分子量分布

由于高分子材料的多分散性,平均分子量并不能完全表征其中各种分子的数量,因此还有分子量分布的概念。目前有三种表示分子量分布的方法:(1)分子量分布指数D

D值越大,表示分布越宽。天然高分子的D值可达1,完全均一,合成高分子的D值一般在1.5~50之间。

(1—8)(2)分子量分布曲线

分为数量分布曲线和质量分布曲线两种。图1—2为典型的质量分布曲线。图中可见,数均分子量处于分布曲线顶峰附近,接近于最可几的平均分子量。图1—2高分子的质量分布曲线

(3)分子量分布函数

分子量分布也可用数学式来表示。但至今为止能用数学式表示的分子量分布不多,因此不常用。平均分子量相同的聚合物,分子量分布可能会有很大差异,这是由于各种大小分子量的分子在材料中所占比例不同所引起的。这正是高分子材料多分散性的特点。

3-2晶态高聚物的结晶结构结晶结构——高聚物在十分之几nm的范围内的结构3-2-1平面锯齿结构(planezigzag)

没有取代基(PE)或取代基较小的(polyester,polyamide,POM,PVA等)的碳氢链中为了使分子链取位能最低的构象,并有利于在晶体中作紧密而规整的堆砌,所以分子取全反式构象,即:取平面锯齿形构象(P.Z)。例如:PE1.PE构象(平面锯齿)2.晶系系:斜方(正交)晶系

3.晶胞俯视图

每个平面内有1+1/4×4=2个结构单元(中间的一个是晶胞独有的,顶点上的是4个晶胞共有的,每个晶胞只能算1/4,四个点为1个)。4.晶胞立体图每个周期内有一个结构单元5.每个晶胞内的结构单元数:

Z=2×1=2即:Z=晶胞俯视面的结构单元数×每个(底面)等同周期内的独有的结构单元数6.计算晶胞密度3-2-2螺旋形结构

(Helix)具有较大的侧基的高分子,为了减小空间阻碍,降低位能,则必须采取旁式构象。例如:全同PP(H31),聚邻甲基苯乙烯(H41)

,聚甲基丙烯酸甲酯PMMA(H52),聚4-甲基戊烯-1

(H72),聚间甲基苯乙烯(H118)等。例如:聚丙稀,PP的C—C主链并不居于同一平面内,而是在三维空间形成螺旋构象,即:它每三个链节构成一个基本螺圈,第四个链节又在空间重复,螺旋等同周期l=6.50A。l相当于每圈含有三个链节(重复单元)的螺距。用符号H31表示H:Helix(螺旋)3:3个重复单元1:1圈IPP(等规聚丙烯)1:螺旋构象。2:晶系:单斜六方拟六方3:晶胞俯视图每个平面有1/2×4+1+1=4个结构单元(中间二个位该晶胞独有的;在线上的为二个晶胞共有,以1/2个计,4个合计为4×1/2=2个)

4:每个等同周期内有三个结构单元。5:单位晶胞内的结构单元数Z=4×3=12。6:ρ的计算:所以看一下IPP的晶胞及参数:用X射线衍射法研究结果为:a=0.665nmb=2.096nmc=0.65nm属于单斜晶系不同的结晶条件可以得到不同的晶形:α,β,γ,δ4种变态,性能各异。3-2-3大分子排列方式不管是取平面锯齿形构象还是螺旋构象,它们在结晶中作规整密堆积时,都只能采取使其主链的中心轴相互平行的方式排列。与主链中心轴方向就是晶胞的主轴,通常约定为C方向。显然,在C方向上,原子间以化学键键合,而在空间其它方向上,则只有分子间力,在分子间力的作用下,分子链将相互靠近到链外原子或取代基之间接近范氏力所能吸引的距离。3-2-3大分子排列方式

由于各个方向的受力不同,就产生了各向异性。因此在合成高聚物的晶体中不出现立方晶系(a=b=c),而其它六种晶系均存在(三方,四方,六方,单斜,三斜,正交)。3-3晶态高聚物的结晶形态结晶结构(微观)是在十分之几纳米范围内考察的结构结晶形态(宏观)——由以上的微观结构而堆砌成的晶体,外形至几十微米,可用电镜观察,也可用光学显微镜。小分子晶体物质的外形——有规则的多面体(Na:正方单晶,云母:片状单晶)。3-3-1晶体的分类①单晶:近程和远程有序性贯穿整个晶体宏观外形:多面体宏观特征:各向异性②挛晶:晶体的远程有序性在某一确定的平面上发生突然转折,而且从这一平面为界的两部分晶体分别有各自的远程有序。3-3-1晶体的分类③多晶:整个晶体中由许多取向不同的晶粒(微小单晶或挛晶)组成,远程有序只能保持在几百nm或几十nm的范围内。宏观外形:不具有多面体的规则外形(如金属,外观上没有明显的规整性)。宏观物性:各向同性。3-3-1晶体的分类④准晶:仍属于晶体范畴,仍然存在点阵结构,但是有畸变的点阵结构,而且只有一定程度的远程有序。另外还有球晶,柱晶,伸直链晶,纤维晶等准晶的二维点阵3-3-2结晶形态(morphology)由于结晶条件不同,结晶性高聚物可以形成形态不同的宏观或亚微观晶体,单晶,树枝晶,伸直链晶体,纤维状晶体,串晶等。组成这些晶体的晶片基本上有两类:折迭链晶片和伸直链晶片。3-3-2结晶形态(morphology)从极稀的高聚物溶液<0.01%中缓慢结晶(常压),可获得单晶体。单晶是具有一定薄规则形状的片状晶体。PE—菱形片晶POM—六角形尼龙6—菱形片晶聚4—甲基1—戊烯四方形片晶3-3-2结晶形态(morphology)晶体生长规律往往是沿螺旋位错中心不断盘旋生长变厚的。特点:a不同的高聚物的单晶外形不同,但晶片厚度几乎都在10nm左右。

b晶片厚度与分子量无关。

C晶片中分子链垂直于晶面。

d高分子链再晶片中折迭排列,称为折迭链晶片。观察手段:①电子显微镜可以观察到单晶。②电子衍射图谱呈清晰的点状花样(布拉格斑点)。3-3-2结晶形态(morphology)2)当溶液浓度在0.01~0.1%的范围内时,可得到枝状晶体,称为树枝晶。实际上是许多单晶片聚集起来的多晶体。3)从高聚物浓溶液或熔体中冷却结晶时,倾向生成球晶,这是聚合物结晶中最常见的形式。它是有许多径向发射的长条扭曲晶片组成的多晶体。形状:圆球状,由微纤束组成,这些微纤束从中心晶核向四周辐射生长。尺寸:几微米至几毫米3-3-2结晶形态(morphology)①当结晶温度在Tm左右,球晶长得很大。②当结晶温度较低时,球晶尺寸减小,但数目增加。③当结晶温度低于Tm时,出现大量晶核,这些晶核是由微纤束组成,但它们不具有足够的空间来组成球晶。3-3-2结晶形态(morphology)微纤束,也叫片晶或晶片,折迭链结构。电镜照片表明,这些晶片为薄片状,而且它们是扭转着的。球晶的径向微纤束具有单晶结构。径向晶片的扭转使得a轴和C轴(大分子链方向)围绕b轴旋转。3-3-2结晶形态(morphology)球晶的成长过程:观察:能在正交偏光显微镜下产生黑十字图案或同心圆环。高分子的聚集态结构高分子的聚集态结构产生黑十字图形的原因:①高聚物球晶对光线的双折射。光线通过各向同性介质(如熔体聚合物)时,因为折射率只有一个,只发生单折射,而且不改变入射光的振动方向和特点;光线通过各向异性介质(如结晶聚合物)时,则发生双折射,入射光分解成振动方向相互垂直,传播速度不同,折射率不等的两条偏振光。产生黑十字图形的原因:②球晶的对称性。如果结晶状态非常好,例如PE,有时可观察到PE球晶的图案是一系列消光同心圆,这是因为PE球晶中的晶片是螺旋形扭曲的,即a轴与c轴在与b轴垂直的方向上旋转形成的(C轴是晶体的一光轴)。3-3-2结晶形态(morphology)4)高聚物在高温高压下结晶,有可能获得由完全伸展的高分子链平行规整排列的伸直链晶片。特点:晶片厚度=分子链长度。例如:PE在>200oC,>4000atm下的结晶。

晶片厚度=103~104nm,基本上为伸直的分子链的长度。目前认为:伸直链晶片是一种热力学上最稳定的高分子晶体。3-3-2结晶形态(morphology)5)纯折迭链晶片(常压)和纯伸直链晶片(高温,高压)都是极端情况,在一般应力下获得的是既有折迭晶片又有伸直晶片的串晶。高分子的聚集态结构3-4部分结晶高聚物的形态和结晶度3-4-1几点结论:①长而柔顺,结构又复杂的高分子链很难形成十分完善的晶体,即使在严格条件下培养的单晶也有许多晶格缺陷。②实际上高聚物的结晶体中总是由晶区和非晶区两部分组成:晶区:规整排列到晶格中的伸直链晶片或折迭链晶片组成。非晶区:未排列到晶格中的分子链和链段,折迭晶片中的链弯曲部分,链末端,空洞等。晶区部分与非晶区部分并不是有着明显的分界线,每个高分子可以同时贯穿几个晶区和非晶区,而在晶区和非晶区两相间的交替部分有着局部有序的过渡状态,即使晶区也存在许多缺陷。3-4-2结晶度(DegreeofCrystallizing)结晶度——试样中结晶部分的重量百分数或体积百分数。①重量百分数②体积百分数w——重量v——体积c——crystalline(结晶)a——amorphous(无定形)★注意:

①在部分结晶的高聚物中,晶区和非晶区的界限不明确,无法准确测定结晶部分的含量,所以结晶度的概念缺乏明确的物理意义。

②结晶度的数值随测定方法的不同而异。结晶度的测定方法密度法(最常用,最简单的方法):原理:分子链在晶区的堆砌密度大,所以晶区密度大,比容小;分子链在非晶区的堆砌密度小,非晶区密度小,比容大。X射线衍射法:原理:部分结晶的高聚物中结晶部分和无定形部分对X射线衍射强度的贡献不同,利用衍射仪得到衍射强度与衍射角的关系曲线,再将衍射图上的衍射峰分解为结晶和非结晶两部分。4-1影响高分子结晶能力的因素对称性取代的烯类高聚物也能结晶另外还有聚酯(polyester),尼龙(nylon),聚砜(PSF)等。4-1影响高分子结晶能力的因素2)链的空间立构规整性上升,结晶能力也提高A.有规立构的都可以结晶:全同PP;全同(间同)PMMA;全同PS;全顺式;全反式1,4聚丁二烯。B.无规立构PP、无规立构PMMA、无规立构PS均为典型的非结晶高聚物(例外的是无规立构的PVAc水解的聚乙烯醇可以结晶)。4-1影响高分子结晶能力的因素3)无规共聚通常使结晶能力下降4)分子间氢键使结晶能力上升(有氢键使分子间力增大,也使分子变得刚硬,两种作用的结果还是利于结晶)。例如:polyester,尼龙,聚乙烯醇5)支化越多,结晶下降(因为支化的分子链不规整,难以结晶);交联越多,结晶也下降(因为交联的分子链不规整,难以结晶)4-2结晶过程及影响因素4-2-1结晶温度(1)一个聚合物的结晶敏感温度区域一般处于其熔点以上10℃和以上30℃之间(+30℃<T<+10℃)。结晶敏感区域;,链旋转和移动困难,难以结晶4-2结晶过程及影响因素(2)因此对于每一聚合物而言,它的结晶程度区域决定于和之差。(3)对于同一高聚物而言,总是可以找到一个温度,在此温度下,它的总结晶速度最大,高于这个温度或低于这个温度,结晶速度却要降低,这个温度为(最大结晶速率时的温度)。多数聚合物结晶速率最大的温度在的0.65~0.9之间:4-2结晶过程及影响因素例如:全同PP=250℃=250+273.2=523.2(K)4-2-2结晶过程及影响因素(1)结晶过程大分子结晶过程与小分子有相似处a.形成晶核过程,晶核受到两方面的影响(晶核内的分子影响周围分子生长,由于热运动的结果晶核也可能消失)b.晶粒生长过程:在以上,第二种影响占上风,晶核消失比成长要快;在以下,则第一种影响占上风,晶核成长比消失要快。总的结晶速度是成长与消失速度之和结晶速度:用某温度下结晶过程进行到一半时所用的时间t1/2的倒数来表征该温度下的结晶速度。4-2-2结晶过程及影响因素(2)影响结晶过程的因素A.温度——明显影响着结晶速度高聚物的结晶速度是晶核生长速度和晶粒生长速度的总和,所以高聚物的结晶速度对温度的依赖性是晶核生长速度对温度依赖性和晶粒生长速度对温度依赖性共同作用的结果。当熔体温度接近熔点时,温度较高,热运动激烈,晶核不易形成,形成了也不稳定,所以结晶速度小。随着温度下降,晶核形成速度增加,分子链也有相当活动性,易排入晶格,所以晶粒形成速度也增加,总的结晶速度也增加。温度再进一步降低时,虽然晶核形成速度继续上升,但熔体粘度变大,分子链活动性下降,不易排入晶格,所以晶粒生长下降。当时,链段不能运动,所以也不能排入晶格,不能结晶,所以用淬火办法得到的是非晶态固体。举例

PTFE的=327℃,它的=300℃,而在250℃结晶速度就降到很慢,所以控制温度(或其它条件)来控制结晶速度,防止聚合物在结晶过程中形成大的晶粒是生产透明材料(PE、定向PP、乙烯丙烯共聚物等薄膜工艺中要考虑的重要因素)定向PP是容易结晶的聚合物,要得到透明薄膜,要求聚合物结晶颗粒尺寸要小于入射光在介质中的波长,否则颗粒太大,在介质中入射光要散射,导致浑浊,使透明度下降.在生产中,一方面我们加入成核剂,使晶核数目增加,晶粒变小,另一方面可采用将熔化的PP急速冷却(淬火)使形成的许多晶核保持在较大的尺寸范围,不再增长,这样就得到了高透明的PP制品。B.应力——影响结晶形态和结晶速度1)影响结晶形态熔体在无应力时冷却结晶――球晶熔体在有应力时冷却结晶――伸直链晶体,串晶,柱晶2)影响结晶速度天然橡胶在常温下不加应力时,几十年才结晶,在常温下,加应力时拉伸条件下,几秒钟就结晶

C.杂质1)能阻碍结晶2)能加速结晶——这一类起到晶核的作用称为成核剂。成核剂可以大大加速结晶速度,成核剂多,球晶长不大,结晶速度大,结晶度大;成核剂少,结晶速度小,结晶度小。生产中控制冷却速度来控制制品中球晶的大小,但厚壁制品由于高聚物传热不好,用控冷的办法还不能使制件内外结晶速度一样,因此使结构也不均匀,产品质量不好。但加入成核剂后,可获得结构均匀、尺寸稳定的制品。D.溶剂:有的溶剂能明显地促进高聚物结晶(例如水能促进尼龙和聚酯的结晶)。生产尼龙网丝时,为增加透明度,快速冷却使球晶足够小,用水作冷却剂时解决不了透明度的问题。后来在结构分析中发现尼龙丝的丝芯是透明的(说明冷却速度已经足够了),但丝的表面有一层大球晶,影响了透明度,将水冷改为油冷后问题就解决了,这正说明水促进了表面尼龙的结晶。E.一切影响高聚物结晶能力的因素也影响结晶速度结晶能力越强,结晶速度也越大。F.对同系物讲,在同样结晶条件下,分子量↓,结晶速度↑,所以要达到同样结晶度,则分子量大的要用更多的时间第五节结晶对高聚物性能的影响

5-1结晶对高聚物性能影响力学性能、密度、光学性热性能、其它性能5-2加工条件对性能的影响5-3熔点熔限熔点、加工条件对Tm的影响、如何提高Tm(链结构对Tm影响)5-1结晶度对高聚物性能的影响同一种单体,用不同的聚合方法或不同的成型条件,可以获得结晶或不结晶的高分子材料。例一PP:无规PP不能结晶,常温下是粘稠液或弹性体,不能用作塑料;等规PP,有较高的结晶度,熔点176℃,具有一定韧性、硬度,是很好的塑料,还可纺丝或纤维。例二PE:LDPE支化度高,硬度低,塑料;HDPE支化少,结晶度高,硬度高,塑料;LLDPE(乙烯与α烯烃共聚物)接上较规整的支链,密度仍低。例三PVA:由于含OH,所以遇到热水要溶解(结晶度较低),提高结晶度可以提高它们的耐热性和耐溶剂性。所以将PVA在230℃热处理85min,结晶度30%→65%,这时耐热性和耐溶剂侵蚀性提高(90℃热水也溶解很少)。但是还不能作衣料,所以采用缩醛化来降低OH含量。PVA→等规PVA,结晶度高不用缩醛化也可用作性能好、耐热水的合成纤维。例四橡胶:结晶度高则硬化失去弹性;少量结晶会使机械强度较高。(1)力学性能(较为复杂)结晶度对高聚物力学性能的影响要看非晶区处于何种状态而定(是玻璃态还是橡胶态)

结晶度增加时,硬度、冲击强度、拉伸强度、伸长率、蠕变、应力松弛等力学性能会发生变化这一部分我们在讲力学性能一章中讲解(2)密度和力学性质A.密度结晶度增大,密度增大;统计数据得到:

那么从总密度是由晶区和非晶区密度的线性加和假定出发:是晶区占的体积百分数,即结晶度所以只要测知未知样品的密度,就可以粗略估计样品的结晶度(可查表得到)B.光学性质物质对光的折光率与物质本身密度有关,晶区非晶区密度不同,因而对光的折光率也不相同。1)光线通过结晶高聚物时,在晶区与非晶区面上能直接通过,而发生折射或反射,所以两相并存的结晶高聚物通常呈乳白色,不透明,如尼龙,聚乙烯等。结晶度减少时,透明度增加。完全非晶的高聚物如无规PS、PMMA是透明的2)并不是结晶高聚物一定透明,因为:a.如果一种高聚物晶相密度与非晶密度非常接近,这时光线在界面上几乎不发生折射和反射。B.当晶区中晶粒尺寸小到比可见光的波长还要小,这时也不发生折射和反射,仍然是透明的。如前面讲到的利用淬冷法获得有规PP的透明性问题,就是使晶粒很小而办到的,或者加入成核剂也可达到此目的。C.热性能对塑料来讲,当结晶度提高到40%以上后,晶区相互连接,形成贯穿整个材料的连续相。因此以上也不软化,最高使用温度可提高到结晶的熔点(而不是)可见结晶度升高,塑料耐热性升高。D.其它性能结晶中分子规整密堆积,能更好的阻挡溶剂渗入,所以结晶度升高,耐溶剂性升高。5-2结晶高聚物加工条件对性能的影响加工成型条件的改变,会改变结晶高聚物的结晶度、结晶形态等,因而也影响了性能。下面举三个例子说明:例1:聚三氟氯乙烯(℃)缓慢结晶,结晶度可达85~90%淬火结晶,结晶度可达35~40%两种结晶方式,冲击强度:a<b;伸长率:a<b;比重:a>b这种高聚物由于耐腐蚀性好,常将它涂在化工容器的内表面防腐蚀。为了使这层保护膜的机械强度提高,控制结晶度十分重要,结晶度高,密度也高,刚性好但脆性大。为了提高韧性,就需要用淬火来降低结晶度,以获得低结晶度的涂层,抗冲击性好。120℃是个重要的温度界限,在120℃以下工作时,结晶度低的聚三氟氯乙烯的零件韧性好,不会变脆,因此对韧性要求高的聚三氟氯乙烯零件不能高于120℃以上工作。例2:对于PE:作为薄膜时,希望有好的韧性和透明性,所以结晶度宜低。作为塑料时,希望有好的刚性和抗张强度,所以结晶度宜高。第六节取向结构

6-1取向现象

6-2取向方式

6-3取向度

6-4取向应用

6-1取向现象(orientation)1取向线性高分子充分伸展时,长度与宽度相差极大(几百、几千、几万倍)。这种结构上时悬殊的不对称性使它们在某些情况下很容易沿某个特定方向占优势平行排列,这种现象就称为取向。2取向态和结晶态相同:都与高分子有序性相关相异:取向态是一维或二维有序,结晶态是三维有序3取向单元非晶高聚物结晶高聚物分子链作为单元:分子链沿外力方向平行排列,但链段未必取向(粘流态时)晶片,晶粒,晶带(晶区)分子链,链段(非晶区)链段:链段取向,分子链可能仍然杂乱无章(高弹态)由熔体结晶时大部分获得球晶,所以拉伸取向实际上是球晶的变形过程4取向机理:取向过程是分子在外力作用下的有序化过程。外力除去后,分子热运动使分子趋向于无序化,即称为解取向过程。高分子有二种单元:链段和整链。所以高聚物取向有链段取向和分子链取向取向的过程是在外力作用下运动单元运动的过程。必须克服高聚物内部的粘滞阻力,因而完成取向过程要一定的时间链段受到的阻力比分子链受到的阻力小,所以外力作用时,首先是链段的取向,然后是整个分子链的取向。在高弹态下,一般只发生链段的取向,只有在粘流态时才发生大分子链的取向。取向过程是热力学不平衡态(有序化不是自发的);解取向过程是热力学平衡态(无序化是自发的。在高弹态下,拉伸可使链段取向,但外力去除后,链段就自发解取向,恢复原状。在粘流态下,外力可使分子链取向,但外力去除,分子链就自发解取向。为了维持取向状态,获得取向材料,必须在取向后迅速使温度降低到玻璃化温度以下,使分子和链段“冻结”起来,这种“冻结”仍然是热力学非平衡态。只有相对稳定性,时间长了,温度升高或被溶剂溶胀时,仍然有发生自发的解取向性。取向快,解取向也快,所以链段解取向比分子链解取向先发生。取向结果:各向异性。6-2取向方式6-2-1单轴取向材料仅沿一个方向拉伸,长度增大,厚度和宽度减小,高分子链或链段倾向沿拉伸方向排列,在取向方向上,原子间以化学键相连。yx例1:合成纤维牵伸是最常见的例子。纺丝时,从喷嘴孔喷出的丝已有一定的取向(分子链取向),再牵伸若干倍,则分子链取向程度进一步提高。例2:薄膜也可单轴取向。目前广泛使用的包扎绳用的全同PP,是单轴拉伸薄膜,拉伸方向十分结实(原子间化学键),Y方向上十分容易撕开(范氏力)。例3:尼龙丝未取向的抗张700-800kg/cm2;尼龙双取向丝的抗拉4700-5700kg/cm2。6-2-2双轴取向材料沿两个相互垂直的方向(X、Y)拉伸,面积增大,厚度减小,高分子链或链段倾向于与拉伸平面(X、Y平面)平行排列,在X、Y平面上分子排列无序,是各向同性的(即在X、Y平面上各个方向都有原子与原子间的化学键存在)。xy原理:生产过程中,使薄膜在其软化点以上,熔点以下的温度范围内急剧进行拉伸,分子产生取向排列,当薄膜急剧冷却时,分子被“冻结”,当薄膜重新加热到被拉伸时的温度,已取向的分子发生解取向,使薄膜产生收缩,取向程度大则收缩率大,取向程度小则收缩率小。例1:薄膜厂应用的双轴拉伸工艺:将熔化挤出的片状在适当的温度下沿相互垂直的两个方向同时拉伸(电影胶片的片基,录音、录像的带基)例2:吹塑工艺:将熔化的物料挤出成管状,同时压缩空气由管芯吹入,使管状物料迅速胀大,厚度减小而成薄膜(PE,PVC薄膜)性能特点:双轴取向后薄膜不存在薄弱方向,可全面提高强度和耐褶性,而且由于薄膜平面上不存在各向异性,存放时不发生不均匀收缩,这对于作摄影胶片的薄膜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论