2018年中考数学一轮复习20讲(专题知识归纳+2017年真题解析)第20讲图形的相似知识归纳+真题解析(2017年真题)_第1页
2018年中考数学一轮复习20讲(专题知识归纳+2017年真题解析)第20讲图形的相似知识归纳+真题解析(2017年真题)_第2页
2018年中考数学一轮复习20讲(专题知识归纳+2017年真题解析)第20讲图形的相似知识归纳+真题解析(2017年真题)_第3页
2018年中考数学一轮复习20讲(专题知识归纳+2017年真题解析)第20讲图形的相似知识归纳+真题解析(2017年真题)_第4页
2018年中考数学一轮复习20讲(专题知识归纳+2017年真题解析)第20讲图形的相似知识归纳+真题解析(2017年真题)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【知识归纳】(一)1.成比例线段在四条线段中,如果其中两条线段的比另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若eq\f(a,b)=eq\f(c,d),则;当b=c时,,那么b是a,d的比例中项.3.线段的黄金分割点C把线段AB分成两条线段AC和BC(AC>BC),如果AC是线段AB和BC的比例中项,且eq\f(AC,AB)=eq\f(BC,AC)=eq\f(\r(5)-1,2)≈0.618,则C点叫做线段AB的.4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。(二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角,对应边的比.2.相似三角形的判定(1)如果一个三角形的两角分别与另一个三角形的两角对应,那么这两个三角形相似;(2)如果一个三角形的两条边与另一个三角形的两条边对应,且夹角,那么这两个三角形相似;(3)如果一个三角形的三条边和另一个三角形的三条边对应,那么这两个三角形相似;(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形.3.相似三角形的性质 (1)相似三角形周长的比等于. (2)相似三角形面积的比等于. (3)相似三角形对应高、对应角平分线、对应中线的比等于.4.相似多边形的性质 (1)相似多边形周长的比等于. (2)相似多边形面积的比等于.5.位似图形(1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做,对应边的比叫做.位似是一种特殊的相似.(2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于;(2)位似图形对应点的连线或延长线相交于点;(3)位似图形对应边;(4)位似图形对应角.【知识归纳答案】(一)1.成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若eq\f(a,b)=eq\f(c,d),则ad=bc;当b=c时,b2=ad,那么b是a,d的比例中项.3.线段的黄金分割点C把线段AB分成两条线段AC和BC(AC>BC),如果AC是线段AB和BC的比例中项,且eq\f(AC,AB)=eq\f(BC,AC)=eq\f(\r(5)-1,2)≈0.618,则C点叫做线段AB的黄金分割点.4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。(二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角相等,对应边的比成比例.2.相似三角形的判定(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,且夹角夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似;(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相似.3.相似三角形的性质 (1)相似三角形周长的比等于相似比. (2)相似三角形面积的比等于相似比的平方. (3)相似三角形对应高、对应角平分线、对应中线的比等于相似比.4.相似多边形的性质 (1)相似多边形周长的比等于相似比. (2)相似多边形面积的比等于相似比的平方.5.位似图形(1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做位似中心,对应边的比叫做位似比.位似是一种特殊的相似.(2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于位似比;(2)位似图形对应点的连线或延长线相交于一点;(3)位似图形对应边成比例;(4)位似图形对应角相等.真题解析一.选择题(共9小题)1.已知2x=3y(y≠0),则下面结论成立的是()A.= B.= C.= D.=【考点】S1:比例的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边都除以2y,得=,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得=,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选:A.2.矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣1【考点】S3:黄金分割;LB:矩形的性质.【分析】根据黄金矩形的定义判断即可.【解答】解:∵宽与长的比是的矩形叫做黄金矩形,∴=,∴a=2,b=﹣1,故选D.3.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%) D.没有改变【考点】S5:相似图形.【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.【解答】解:∵△ABC的每条边长增加各自的10%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.故选D.4.如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A.= B.=C.= D.=【考点】S7:相似三角形的性质.【分析】根据相似三角形的性质判断即可.【解答】解:∵△ABC∽△DEF,∴=,A不一定成立;=1,B不成立;=,C不成立;=,D成立,故选:D.5.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【考点】S7:相似三角形的性质.【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选A6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.【考点】S8:相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺 B.57.5尺 C.6.25尺 D.56.5尺【考点】S9:相似三角形的判定与性质.【分析】根据题意可知△ABF∽△ADE,根据相似三角形的性质可求AD,进一步得到井深.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.9.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.二.填空题(共6小题)10.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为6.【考点】S4:平行线分线段成比例.【分析】由a∥b∥c,可得=,由此即可解决问题.【解答】解:∵a∥b∥c,∴=,∴=,∴EF=6,故答案为6.11.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=4.【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵AB∥CD,∴==,即=,解得,AO=4,故答案为:4.12.如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=.【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】过O点作OM∥AD,求出AM和MO的长,利用△AEF∽△MEO,得到关于AF的比例式,求出AF的长即可.【解答】解:过O点作OM∥AD,∵四边形ABCD是平行四边形,∴OB=OD,∴OM是△ABD的中位线,∴AM=BM=AB=,OM=BC=4,∵AF∥OM,∴△AEF∽△MEO,∴=,∴=,∴AF=,故答案为.13.如图,在△ABC中,D、E分别是边AB、AC的中点,则△ADE与△ABC的面积比S△ADE:S△ABC=1:4.【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【分析】根据三角形中位线定理得到DE∥BC,DE=BC,得到△ADE∽△ABC,根据相似三角形的性质计算即可.【解答】解:∵D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案为:1:4.14.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为3:4.【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】作MH⊥BC于H,设AB=AC=m,则BM=m,MH=BM=m,根据平行四边形的性质求得OA=OC=AC=m,解直角三角形求得FC=m,然后根据ASA证得△AOE≌△COF,证得AE=FC=m,进一步求得OE=AE=m,从而求得S△AOE=m2,作AN⊥BC于N,根据等腰三角形的性质以及解直角三角形求得BC=m,进而求得BF=BC﹣FC=m﹣m=m,分别求得△AOE与△BMF的面积,即可求得结论.【解答】解:设AB=AC=m,则BM=m,∵O是两条对角线的交点,∴OA=OC=AC=m,∵∠B=30°,AB=AC,∴∠ACB=∠B=30°,∵EF⊥AC,∴cos∠ACB=,即cos30°=,∴FC=m,∵AE∥FC,∴∠EAC=∠FCA,又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF,∴AE=FC=m,∴OE=AE=m,∴S△AOE=OA•OE=××m=m2,作AN⊥BC于N,∵AB=AC,∴BN=CN=BC,∵BN=AB=m,∴BC=m,∴BF=BC﹣FC=m﹣m=m,作MH⊥BC于H,∵∠B=30°,∴MH=BM=m,∴S△BMF=BF•MH=×m×m=m2,∴==.故答案为3:4.15.如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=3.学科网【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【分析】证明MN是△ABC的中位线,得出MN∥AB,且MN=AB,证出△CMN∽△CAB,根据面积比等于相似比平方求出△CMN与△CAB的面积比,继而可得出△CMN的面积与四边形ABNM的面积比.最后求出结论.【解答】解:∵M,N分别是边AC,BC的中点,∴MN是△ABC的中位线,∴MN∥AB,且MN=AB,∴△CMN∽△CAB,∴=()2=,∴=,∴S四边形ABNM=3S△CMN=3×1=3.故答案为:3.三.解答题(共8小题)16.(1)计算:÷;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.【考点】S8:相似三角形的判定;6A:分式的乘除法;LE:正方形的性质.【分析】(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;(2)先根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可判定△EBF∽△FCG.【解答】(1)解:原式=•=;(2)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∴∠BEF+∠BFE=90°,∵∠EFG=90°,∴∠BFE+∠CFG=90°,∴∠BEF=∠CFG,∴△EBF∽△FCG.17.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【考点】S9:相似三角形的判定与性质.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=18.如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.【考点】S9:相似三角形的判定与性质;MC:切线的性质;T7:解直角三角形.【分析】(1)根据已知条件得到∠ACB=∠ABP=90°,根据余角的性质即可得到结论;(2)根据相似三角形的判定和性质即可得到结论;(3)根据三角函数的定义即可得到结论.【解答】解:(1)∵AB是⊙O的直径,PB与⊙O相切于点B,∴∠ACB=∠ABP=90°,∴∠A+∠ABC=∠ABC+∠CBP=90°,∴∠BAC=∠CBP;(2)∵∠PCB=∠ABP=90°,∠P=∠P,∴△ABP∽△BCP,∴,∴PB2=PC•PA;(3)∵PB2=PC•PA,AC=6,CP=3,∴PB2=9×3=27,∴PB=3,∴sin∠PAB===.19.如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程x+=m的两实根,且tan∠PCD=,求⊙O的半径.【考点】S9:相似三角形的判定与性质;B2:分式方程的解;M5:圆周角定理;ME:切线的判定与性质;T7:解直角三角形.【分析】(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;(3)根据题意得到AC•BQ=4,得到BD=2,由(1)知PQ是⊙O的切线,由切线的性质得到OD⊥PQ,根据平行线的性质得到OD⊥AB,根据三角函数的定义得到BE=3DE,根据勾股定理得到BE=,设OB=OD=R,根据勾股定理即可得到结论.【解答】(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴=,∴BD2=AC•BQ;(3)解:方程x+=m可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程x+=m的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=,∴tan∠ABD=,∴BE=3DE,∴DE2+(3DE)2=BD2=4,∴DE=,∴BE=,设OB=OD=R,∴OE=R﹣,∵OB2=OE2+BE2,∴R2=(R﹣)2+()2,解得:R=,∴⊙O的半径为.20.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;学科网(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x=,即AE=.21.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论