函数的图象数学教案_第1页
函数的图象数学教案_第2页
函数的图象数学教案_第3页
函数的图象数学教案_第4页
函数的图象数学教案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的图象数学教案教学目标

【学问与技能】

使学生会用描点法画出函数y=ax2的图象,理解并把握抛物线的有关概念及其性质.

【过程与方法】

使学生经受探究二次函数y=ax2的图象及性质的过程,获得利用图象讨论函数性质的阅历,培育学生分析、解决问题的力量.

【情感、态度与价值观】

使学生经受探究二次函数y=ax2的图象和性质的过程,培育学生观看、思索、归纳的良好思维品质.

重点难点

【重点】

使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.

【难点】

用描点法画出二次函数y=ax2的图象以及探究二次函数的性质.

教学过程

一、问题引入

1.一次函数的图象是什么?反比例函数的图象是什么?

(一次函数的图象是一条直线,反比例函数的图象是双曲线.)

2.画函数图象的一般步骤是什么?

一般步骤:(1)列表(取几组x,y的对应值);(2)描点(依据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).

3.二次函数的图象是什么外形?二次函数有哪些性质?

(运用描点法作二次函数的图象,然后观看、分析并归纳得到二次函数的性质.)

二、新课教授

【例1】画出二次函数y=x2的图象.

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.

(2)描点:依据上表中x,y的数值在平面直角坐标系中描点(x,y).

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如下图.

思索:观看二次函数y=x2的图象,思索以下问题:

(1)二次函数y=x2的图象是什么外形?

(2)图象是轴对称图形吗?假如是,它的对称轴是什么?

(3)图象有最低点吗?假如有,最低点的坐标是什么?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.

学生动手画图,观看、争论并归纳,积极展现探究结果,教师评价.

函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.

由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.

【例2】在同始终角坐标系中,画出函数y=x2及y=2x2的图象.

解:分别填表,再画出它们的图象.

思索:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.

学生动手画图,观看、争论并归纳,答复探究的思路和结果,教师评价.

抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.

探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。

师生活动:

学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观看、争论并归纳.教师巡察学生的探究状况,若发觉问题,准时点拨.

学生汇报探究的思路和结果,教师评价,给出图形.

抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大.

探究2:比照抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?

师生活动:

学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观看、争论并归纳.

教师巡察学生的探究状况,发觉问题,准时点拨.

学生汇报探究思路和结果,教师评价,给出图形.

抛物线y=x2、y=-x2的图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称.

教师引导学生小结(学问点、规律和方法).

一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

从二次函数y=ax2的图象可以看出:假如a0,当x0时,y随x的增大而减小,当x0时,y随x的增大而增大;假如a0,当x0时,y随x的增大而增大,当x0时,y随x的增大而减小.

三、稳固练习

1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是.

【答案】下(0,-4)x=00大-4

2.当m≠时,y=(m-1)x2-3m是关于x的二次函数.

【答案】1

3.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.

【答案】-3或3-12

4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.

【答案】12

5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.

【答案】y=-2x2

6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()

A.y=x2B.y=x2

C.y=-2x2D.y=-x2

【答案】C

7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()

A.y=x2B.y=4x2

C.y=-2x2D.无法确定

【答案】A

8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,以下说法错误的选项是()

A.两条抛物线关于x轴对称

B.两条抛物线关于原点对称

C.两条抛物线关于y轴对称

D.两条抛物线的交点为原点

【答案】C

四、课堂小结

1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.

2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.

教学反思

本节课的内容主要讨论二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再依据图象总结抛物线的有关性质.整个内容分成:(1)例1是根底;(2)在例1的根底之上引入例2,让学生体会a的大小对抛物线开口宽敞程度的影响;(3)例2及后面的练习探究让学生领悟a的正负对抛物线开口方向的影响;(4)最终让学生比拟例1和例2,练习归纳总结.

函数的图象数学教案2

一、目的要求

1.使学生能画出正比例函数与一次函数的图象。

2.结合图象,使学生理解正比例函数与一次函数的性质。

3.在学习一次函数的图象和性质的根底上,使学生进一步理解正比例函数和一次函数的概念。

二、内容分析

1、对函数的讨论,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的根本工具,并且,比起高中对函数的讨论,更多地依靠于图象的直观,从讨论的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开头学习函数概念时,有一个一般的简介,在详细学习几种数时,就不一一单独叙述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、微小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为根本教学要求。

2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进展严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的熟悉就可以了。

三、教学过程

复习提问:

1.什么是一次函数?什么是正比例函数?

2.在同始终角坐标系中描点画出以下三个函数的图象:

y=2xy=2x—1y=2x+1

新课讲解:

1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满意横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以推断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

一般地,一次函数的图象是一条直线。

前面我们在画一次函数的图象时,采纳先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

先看两个正比例项数,

y=0。5x

与y=—0。5x

由这两个正比例函数的解析式不难看出,当x=0时,

y=0

即函数图象经过原点.(让学生想一想,为什么?)

除了点(0,0)之外,对于函数y=0。5x,再选一点(1,0。5),对于函数y=—0。5x。再选一点(1,一0。5),就可以分别画出这两个正比例函数的图象了。

实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

(1)先选取两点,通常选点(0,0)与点(1,k);

(2)在坐标平面内描出点(0,O)与点(1,k);

(3)过点(0,0)与点(1,k)做一条直线.

这条直线就是正比例函数y=kx(k≠0)的图象.

观看正比例函数y=0。5x的图象.

这里,k=0.5>0.

从图象上看,y随x的增大而增大.

再观看正比例函数y=—0.5x的图象。

这里,k=一0.5<0

从图象上看,y随x的增大而减小

实际上,我们还可以从解析式本身的特点动身,考虑正比例函数的性质。

先看

y=0。5x

任取两对对应值。(x1,y1)与(x2,y2),

假如x1>x2,由k=0。5>0,得

0。5x1>0。5x2

即yl>y2

这就是说,当x增大时,y也增大。

类似地,可以说明的y=—0.5x性质。

从解析式本身特点动身分析正比例函数性质,可视学生程度考虑是否向学生介绍。

一般地,正比例函数y=kx(k≠0)有以下性质:

(1)当k>0时,y随x的增大而增大;

(2)当k<0时,y随x的增大而减小。

2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点便利,对于一次函数

y=kx+b(k,b是常数,k≠0)

通常选取

(O,b)与(—,0)

两点,

对于例l中的一次函效

y=2x+1与y=—2x+1

就分别选取

(O,1)与(一0.5,2),

还有

(0,1)—与(0.5.0).

在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线)y=kx+b

结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

课堂练习:

教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

课堂小结:

1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.

2。一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点(,0),过这两点的直线即所求图象。

3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

四、课外作业

1.教科书习题13.5A组第l一3题.

2.选作教科书习题13.5B组第1题.

函数的图象数学教案3

教学目标

(一)知道函数图象的意义;

(二)能画出简洁函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

教学重点和难点

重点:熟悉函数图象的意义,会对简洁的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

教学过程设计

(一)复习

1、什么叫函数?

2、什么叫平面直角坐标系?

3、在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4、假如点A的横坐标为3,纵坐标为5,请用记号表示A(3,5)。

5、请在坐标平面内画出A点。

6、假如已知一个点的坐标,可在坐标平面内画出几个点?反过来,假如坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

(二)新课

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

详细做法是

第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。

函数式y=2x+1(这种用表格表示函数关系的方法叫做列表法)

其次步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

第三步连线,根据横坐标由小到大的挨次把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。图13—24例1在同始终角坐标系中画出以下函数式的图象:

(1)y=—3x;(2)y=—3x+2;(3)y=—3x—3

(1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画邮对应的点。把12个点画在同始终角坐标系中。

(2)根据月份由小到大的挨次,把每两个点用线段连接起来。

(3)解读图象:从图说出几月到几月产量是上升的、下降的或不升不降的。

(4)假如从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?

解:(1),(2)见图13—26(3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。

产量下降:8月到9月,9月到10月。

产量不升不降:2月到3月;6月到7月,7月到8月。

(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5,所以4月15日的产量约为4.5吨。

(三)课堂练习

已知函数式y=—2x。用列表(x取—2,—1,2,1,2),描点,连线的程序,画出它的图象。

(四)小结

到现在,我们已经学过了表示函数关系的方法有三种:

1、解析式法——用数学式子表示函数的关系。

2、列表法——通过列表给出函数y与自变量x的对应关系。

3、图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,全部这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。

这三种表示函数的方法各有优缺点。

1、用解析法表示函数关系

优点:简洁明白。能从解析式清晰看到两个变量之间的全部相依关系,并且适合进展理论分析和推导计算。

缺点:在求对应值时,有时要做较简单的计算。

2、用列表表示函数关系

优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很便利。

缺点:表中不能把全部的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。

3、用图象法表示函数关系

优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。

缺点:从自变量的值经常难以找到对应的函数的精确值。

函数的三种根本表示方法,各有各的优点和缺点,因此,要依据不同问题与需要,敏捷地采纳不同的方法。在数学或其他科学讨论与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。

(五)作业

1、在图13—27中,不能表示函数关系的图形有()

(A)(a),(b),(c)(B)(b),(c),(d)(C)(b),(c),(e)(D)(b),(d),(e)

2、函数y=的图象是图13—28中的()

3、矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2)。

(1)以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;

(2)列表、描点、连线画出此函数的图象

4、(1)画出函数y=—x+2的图象(在—4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);

(2)推断以下各有序实数对是不是函数。Y=—x+2的自变量x与函数y的一对对应值,假如是,检验一下具有相应坐标的点是否在你所出的函数图象上:(—2,2),(—,2),(—1,3),(,1)

5、画出以下函数的图象:

(1)y=4x—1;(2)y=4x+1

6、图13—29是北京春季某一天的气温随时间变化的图象。依据图象答复,在这一天:

(1)8时,12时,20时的气温各是多少;

(2)最高气温与最低气温各是多少;

(3)什么时间气温最高,什么时间气温最低。

7、画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

8、画出函数y=图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

9、作业的.答案或提示

(1)选(C),由于对应于x的一个值的y值不是唯一的。

10、选(D)当x0时,=x,所以y===1

(1)y=x(6—x)其中00时,x的取值范围如何?

(2)y=0时,x取什么值?

(1)y<0时,x的取值范围如何?

小结:数与形是数学中相互依赖的两个方面.图形比较直观,可以启发思路;而数学的严格证明也是必不可少的.直观性和形式化是数学的两重性.

探究活动

探究问题:

欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c的图象》。如果零售单价每降价0.1元,月销售量就要增加5把.

(1)欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?

(2)欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?

(3)欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?

(4)现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)

解:(1)(14—8)(元)

(2)638元、728元、748元、792元、792元、750元。

(3)设降价元时利润最大,最大利润为元

=

=

=

∴当时,有最大值

(4)设降价元时利润最大,利润为元

(其中)。

化简,得。

∴当时,有最大值。

∴。

数学教案-二次函数y=ax2+bx+c的图象

函数的图象数学教案5

教材分析

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

1.注重“类比教学”在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由“学会”到“会学”,真正实现“教是为了不教”的目的.

2.注重“数学结合”的教学

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

(1)让学生经历绘制函数图象的具体过程。

(2)切莫急于呈现画函数图象的简单画法。

(3)注意让学生体会研究具体函数图象规律的方法。

知识技能

目标

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会选择两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

过程与方法目标

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度目标

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

教学重点

一次函数的图象和性质。

教学难点

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

函数的图象数学教案6

一、教学目的

1.使学生进一步理解自变量的取值范围和函数值的意义.

2.使学生会用描点法画出简单函数的图象.

二、教学重点、难点

重点:

1.理解与认识函数图象的意义.

2.培养学生的看图、识图能力.

难点:

在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

三、教学过程

1.画函数图象的方法是描点法.其步骤:

(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).

2.讲解画函数图象的三个步骤和例.画出函数y=x+0。5的图象.

小结

本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

练习:①选用课本练习(前一节已作:列表、描点,本节要求连线)

②补充题:画出函数y=5x-2的图象.

作业:选用课本习题.

四、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论