版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省益阳市新桥乡中学2022-2023学年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.曲线y=2x2﹣x在点(1,1)处的切线方程为()A.x﹣y+2=0 B.3x﹣y+2=0 C.x﹣3y﹣2=0 D.3x﹣y﹣2=0参考答案:D【考点】利用导数研究曲线上某点切线方程.【分析】欲求曲线y=2x2﹣x在点(1,1)处的切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=f(x)=2x2﹣x,∴f'(x)=4x﹣1,当x=1时,f'(1)=3得切线的斜率为3,所以k=3;所以曲线在点(1,1)处的切线方程为:y﹣1=3(x﹣1),即3x﹣y﹣2=0.故选D.2.双曲线的渐近线方程是(
)A.
B.
C.
D.参考答案:A3.在中,,,面积,则(
)A.B.49C.51D.75参考答案:B4.已知向量=(1,﹣3),=(4,﹣2),若实数λ使得λ+与垂直,则λ=()A.﹣1 B.1 C.﹣2 D.2参考答案:A【考点】数量积判断两个平面向量的垂直关系.【分析】利用向量的垂直的充要条件,列出方程,求解即可.【解答】解:λ+=(λ+4,﹣3λ﹣2),代入(λ+)?=0,即:λ+4+9λ+6=0,解得λ=﹣1.故选:A.5.如图,边长为1正方形ABCD中,分别在边BC、AD上各取一点M与N,下面用随机模拟的方法计算|MN|>1.1的概率.利用计算机中的随机函数产生两个0~1之间的随机实数x,y,设BM=x,AN=y,则可确定M、N点的位置,进而计算线段MN的长度.设x,y组成数对(x,y),经随机模拟产生了20组随机数:(0.82,0.28)(0.47,0.38)(0.71,0.62)(0.68,0.83)(0.66,0.63)(0.66,0.18)(0.01,0.35)(0.59,0.06)(0.28,0.22)(0.27,0.05)(0.98,0.32)(0.92,0.99)(0.70,0.49)(0.38,0.60)(0.06,0.78)(0.24,0.46)(0.17,0.75)(0.77,0.59)(0.15,0.98)(0.63,0.78)通过以上模拟数据,可得到“|MN|>1.1”的概率是()A.0.3 B.0.35 C.0.65 D.0.7参考答案:B考点:模拟方法估计概率.专题:应用题;概率与统计.分析:由题意,经随机模拟产生了如下20组随机数,满足题意,可以通过列举得到共7组随机数,根据概率公式,得到结果.解答:解:由题意,|MN|=>1.1,∴(y﹣x)2>0.21,20组随机数,满足题意的有(0.82,0.28),(0.66,0.18),(0.59,0.06),(0.98,0.32),(0.06,0.78),(0.17,0.75),(0.15,0.98),共7个,∴“|MN|>1.1”的概率是=0.35,故选:B.点评:本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.6.若集合,集合,则M∩N=(
)A. B. C. D.参考答案:D由题意得,选D.
7.若函数在内有极小值,则A.
B.
C.
D.参考答案:A略8.下列函数,既是偶函数,又在(-∞,0)上单调递增的是(
)A. B.C. D.参考答案:B【分析】对每一个选项逐一分析判断得解.【详解】对于选项A,,函数不是偶函数,所以该选项是错误的;对于选项B,所以函数f(x)是偶函数,在上是减函数,在上是增函数,在上是增函数,所以该选项是正确的;对于选项C,是偶函数,在上是减函数,所以该选项是错误的;对于选项D,,是偶函数,在上不是增函数,是非单调函数,所以该选项是错误的.故选:B【点睛】本题主要考查函数的单调性和奇偶性的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.设点P(x,y),则“x=﹣2且y=1”是“点P在直线l:x+y+1=0上”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据吃饭必要条件的定义以及点和直线的关系判断即可.【解答】解:∵x=﹣2且y=1”可以得到“点P在直线l:x+y+1=0上”,当“点P在直线l:x+y+1=0上”时,不一定得到x=﹣2且y=1,∴“x=﹣2且y=1”是“点P在直线l:x+y+1=0上”的充分不必要条件,故选:A.10.已知函数f(x)=,若,则k的取值范围是
A、0≤k<
B、0<k<
C、k<0或k>
D、0<k≤参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知关于的一元二次不等式的解集为,若,则的取值范围是
▲
.参考答案:12.
不等式组sinx>cosx>tanx>cotx在(0,2)中的解集(用区间表示)是______.参考答案:(-arcsin
)13.已知函数,则
参考答案:e略14.如图矩形长为5,宽为2,在矩形内随机地撒200颗黄豆,数得落在阴影部分的黄豆数为120颗,则我们可以估计出阴影部分的面积为
.参考答案:6【考点】几何概型.【分析】先由黄豆试验估计,黄豆落在阴影部分的概率,再转化为几何概型的面积类型求解.【解答】解:根据题意:黄豆落在阴影部分的概率是矩形的面积为10,设阴影部分的面积为S则有∴S=6.故答案为:6.15.设若f(f(0))=a,则a=______.参考答案:或216.已知F1,F2分别是椭圆C:的左右焦点,A是其上顶点,且是等腰直角三角形,延长AF2与椭圆C交于另一点B,若的面积是8,则椭圆C的方程是
.参考答案:17.如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为
参考答案:-1
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.试做一个上端开口的圆柱形容器,它的净容积为V,壁厚为a(包括侧壁和底部),其中V和a均为常数。问容器内壁半径为多少时,所用的材料最少?
参考答案:
略19.已知函数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若?x∈(﹣2,0),f(x)≤0恒成立,求实数a的取值范围;(Ⅲ)当a>0时,讨论函数f(x)的单调性.参考答案:【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,计算f′(1),f(1)的值,求出切线方程即可;(Ⅱ)问题转化为在(﹣2,0)恒成立,令(﹣2<x<0),根据函数的单调性求出g(x)的最小值,从而求出a的范围即可;(Ⅲ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可.【解答】解:(Ⅰ)当a=0时,f'(x)=(x+1)ex,∴切线的斜率k=f'(1)=2e,又f(1)=e,y=f(x)在点(1,e)处的切线方程为y﹣e=2e(x﹣1),即2ex﹣y﹣e=0.(Ⅱ)∵对?x∈(﹣2,0),f(x)≤0恒成立,∴在(﹣2,0)恒成立,令(﹣2<x<0),,当﹣2<x<﹣1时,g'(x)<0,当﹣1<x<0时,g'(x)>0,∴g(x)在(﹣2,﹣1)上单调递减,在(﹣1,0)上单调递增,∴,故实数a的取值范围为.(Ⅲ)f'(x)=(x+1)(ex﹣a).令f'(x)=0,得x=﹣1或x=lna,①当时,f'(x)≥0恒成立,∴f(x)在R上单调递增;②当时,lna<﹣1,由f'(x)>0,得x<lna或x>﹣1;由f'(x)<0,得lna<x<﹣1.∴f(x)单调递增区间为(﹣∞,lna),(﹣1,+∞);单调减区间为(lna,﹣1).③当时,lna>﹣1,由f'(x)>0,得x<﹣1或x>lna;由f'(x)<0,得﹣1<x<lna.∴f(x)单调增区间为(﹣∞,﹣1),(lna,+∞),单调减区间为(﹣1,lna).综上所述:当时,f(x)在R上单调递增;当时,f(x)单调增区间为(﹣∞,lna),(﹣1,+∞),单调减区间为(lna,﹣1);当时,f(x)单调增区间为(﹣∞,﹣1),(lna,+∞),单调减区间为(﹣1,lna).20.有两个投资项目、,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式;(2)现将万元投资A项目,10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.参考答案:解:(1)投资为万元,A项目的利润为万元,B项目的利润为万元。由题设由图知又从而
(2)令当答:当A项目投入3.75万元,B项目投入6.25万元时,最大利润为万元.略21.在直角坐标系xOy中,直线l的参数方程为(t为参数),若以该直角坐标系的原点O为极点,x轴的正半粙为极轴建立极坐标系,曲线C的极坐标方程为.设M点极坐标为,且,,.(Ⅰ)求直线l的普通方程与曲线C的直角坐标方程;(Ⅱ)①求M点的直角坐标;②若直线l与曲线C交于A,B两点,求.参考答案:(Ⅰ)直线,曲线(Ⅱ)①②【分析】(Ⅰ)利用参数方程化普通方程,利用极坐标化普通方程求直线的普通方程与曲线的直角坐标方程;(Ⅱ)①求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生消防演练课
- 超星食品安全组日常饮食
- 部编版八年级地理上册第三章第一节《自然资源的基本特征》课件
- 放射性皮炎的护理重点
- 1.1 物质结构研究的内容课件高二上学期化学苏教版(2019)选择性必修第二册
- 彩虹教案反思
- 虎和兔说课稿
- 函数的说课稿
- 产科科室护理一级质控
- 被针刺伤应急演练
- 东方电影学习通超星期末考试答案章节答案2024年
- 税务代理合同模板
- 《西游记》导读(12-15回)
- 出租车行业管理方案
- 【课件】第四章《第三节平面镜成像》课件人教版物理八年级上册
- DB34∕T 2290-2022 水利工程质量检测规程
- 2024年中国彩屏GPS手持机市场调查研究报告
- 2021年山东省职业院校技能大赛导游服务赛项-导游英语口语测试题库
- 2024年广东省清远市佛冈县事业单位公开招聘工作人员历年高频500题难、易错点模拟试题附带答案详解
- 文印竞标合同范本
- 2024年广东省深圳市中考历史试题
评论
0/150
提交评论