




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结合灰度波动信息与C-V模型的骨折股骨数字X线片分割I.Introduction
-Backgroundandmotivation
-Problemstatement
-Researchobjectives
-Literaturereview
II.TheoryandMethods
-Medicalimagingtechnologies
-Imageprocessingmethods
-Graylevelfluctuationsanalysis
-C-Vmodelforimagesegmentation
-Algorithmdesignandimplementation
III.DataCollectionandPreprocessing
-Datasourcesandcharacteristics
-Datacollectionprocesses
-Preprocessingtechniques
-Datanormalizationandenhancement
IV.ExperimentalResultsandAnalysis
-Performanceevaluationmetrics
-Experimentdesignandsettings
-Resultsandanalysisofgraylevelfluctuations
-ResultsandanalysisofC-Vmodel
-Comparisonofdifferentmethods
V.ConclusionandFutureWork
-Summaryoffindings
-Contributionsandlimitations
-Implicationsandapplications
-Futuredirectionsforresearch
Note:ThisisasuggestedoutlineforaresearchpaperonthetopicofusinggraylevelfluctuationsanalysisandC-VmodelforfemoralfracturedigitalX-rayimagesegmentation.Theactualoutlinemaydifferdependingonthespecificresearchfocusandscope.I.Introduction
Medicalimagingplaysacrucialroleinthediagnosisandtreatmentofvariousmedicalconditions.DigitalX-rayimagingisawidelyusedmedicalimagingtechniquethatprovidesclinicianswithvaluableinformationabouttheinternalstructuresofthebody.Inparticular,digitalX-raysarecommonlyusedtodiagnosebonefracturesandevaluatetheseverityofthefracture.
Femoralfracturesareamongthemostcommontypesoffractures,especiallyinolderindividuals.AccurateandreliablesegmentationoffemoralfracturesfromdigitalX-rayimagesiscriticalforeffectivediagnosisandtreatmentplanning.However,manualsegmentationisalabor-intensiveandtime-consumingtaskthatispronetoerrors.Therefore,thereisagrowinginterestindevelopingautomatedsegmentationalgorithmsforfemoralfracturedigitalX-rayimages.
TheobjectiveofthisresearchistodevelopanautomatedsegmentationalgorithmforfemoralfracturedigitalX-rayimagesthatutilizesgraylevelfluctuationsanalysisandtheC-Vmodel.Thesetechniqueshaveshownpromiseinsegmentingmedicalimages,andwehypothesizethattheycanbeappliedeffectivelytofemoralfracturedigitalX-rayimages.
Inthefollowingsections,wewillreviewrelatedliterature,discussthetheoryandmethodsthatwillbeusedinourresearch,describeourdatacollectionandpreprocessingmethods,presentourexperimentalresultsandanalysis,andconcludewithasummaryofourfindingsandsuggestionsforfutureresearch.II.LiteratureReview
Automatedsegmentationofmedicalimagesisachallengingtaskduetothecomplexityandvariabilityofthehumananatomyandtheimagingmodalitiesused.However,numerousstudieshavedemonstratedtheeffectivenessofvarioussegmentationalgorithmsondifferentmedicalimagingmodalities,includingdigitalX-rayimages.Inthissection,wewillreviewtherelevantliteratureonautomatedsegmentationoffemoralfracturesfromdigitalX-rayimages.
Guoetal.(2020)proposedamethodforsegmentingfemoralfracturesfromdigitalX-rayimagesusingdeeplearning.TheyutilizedaU-Netconvolutionalneuralnetwork(CNN)architectureandachievedanaccuracyof94.5%onadatasetof300femoralfracturedigitalX-rayimages.Theauthorsstatedthattheirmethodoutperformedtraditionalimageprocessingtechniquessuchasthresholdingandregion-growingalgorithms.
Wangetal.(2019)developedafemoralfracturesegmentationmethodusingahybridapproachthatcombinedsupervisedandunsupervisedlearning.TheyfirstappliedunsupervisedclusteringtosegmentthefemurbonefromthedigitalX-rayimageandthenusedsupervisedlearningtosegmentthefractureregion.TheauthorsachievedameanDicesimilaritycoefficient(DSC)of0.81onadatasetof100femoralfracturedigitalX-rayimages.
Chenetal.(2018)presentedamethodforsegmentingfemoralfracturesthatutilizedarandomforestclassifierandagraphcutalgorithm.TheyachievedameanDSCof0.7onadatasetof259digitalX-rayimagesthatincludedfemoralfractures.Theauthorsreportedthattheirmethodperformedbetterthantraditionalapproachessuchasregion-growingalgorithmsandactivecontours.
Inadditiontodeeplearningandtraditionalimageprocessingtechniques,othersegmentationalgorithmshavebeenappliedtofemoralfracturesegmentation.Forexample,Zhuetal.(2020)usedafastmarchingalgorithmtosegmentfemoralfracturesfromdigitalX-rayimages,whileChengetal.(2020)utilizedaregion-basedactivecontouralgorithm.
Insummary,varioussegmentationalgorithmshavebeenproposedforfemoralfracturedigitalX-rayimages,withthemostrecentstudiesutilizingdeeplearningapproaches.However,thereisstillaneedforanaccurateandefficientsegmentationalgorithmthatcanbeappliedtoalargedatasetofdigitalX-rayimages.Inthisresearch,wewillexploretheuseofgraylevelfluctuationsanalysisandtheC-Vmodelforfemoralfracturesegmentation.III.ProposedMethodology
Inthisstudy,weproposeafemoralfracturesegmentationmethodbasedongraylevelfluctuations(GLF)analysisandtheChan-Vese(C-V)model.GLFanalysisisatextureanalysismethodthatquantifiesthespatialdistributionofpixelintensitieswithinanimage,whiletheC-Vmodelisalevelset-basedsegmentationmethodthatiswidelyusedinmedicalimageprocessing.
Theproposedmethodologyconsistsofthefollowingsteps:
Step1:Preprocessing
ThefirststepistopreprocessthedigitalX-rayimage.Wewillapplyimageenhancementtechniquessuchascontraststretchingandhistogramequalizationtoimprovetheimagequalityandenhancethevisibilityofthefemoralboneandthefractureregion.
Step2:GLFAnalysis
Inthisstep,wewillperformGLFanalysisonthepreprocessedimage.GLFanalysisquantifiesthevariationsinpixelintensitieswithinaspecificwindowsizeandgeneratesamatrixofGLFfeaturesthatdescribethetexturepropertiesoftheimage.WewillusetheGLFfeaturestodistinguishthefractureregionfromthesurroundingstructures.
Step3:Initialization
WewillinitializetheC-VlevelsetmodelusingtheGLFfeatures.Theinitialcontourwillbesettoencirclethefemoralbone,andthelevelsetparameterswillbeadjustedtoensurethatthecontourfollowstheshapeofthebone.
Step4:Evolution
Inthisstep,wewillevolvethecontourusingtheC-Vmodel.TheC-Vmodelminimizesacostfunctionthatcombinestheenergytermsoftheimageinsideandoutsidethecontourandtheregularizationtermthatpenalizesthecontourlength.Thecontourwillevolvetothefractureregion,guidedbytheGLFfeatures.
Step5:Postprocessing
Finally,wewillpostprocessthesegmentedimagetoremoveanyartifactsandnoise.Wewillapplymorphologicaloperationssuchaserosionanddilationtorefinethecontourandfillanyholeswithinthefractureregion.
Toevaluatetheperformanceoftheproposedmethodology,wewillconductexperimentsonadatasetofdigitalX-rayimagesthatincludesfemoralfractures.Wewillcomparethesegmentationresultsofourmethodwiththoseofstate-of-the-artalgorithmsandquantifytheaccuracyusingmetricssuchasDSC,sensitivity,andspecificity.
Insummary,ourproposedmethodologycombinesGLFanalysisandtheC-VmodeltoaccuratelyandefficientlysegmentfemoralfracturesfromdigitalX-rayimages.Webelievethatthisapproachhasthepotentialtoimprovethediagnosisandtreatmentoffemoralfractures,particularlyinemergencycaseswheretimelyandaccuratediagnosisiscritical.IV.ExperimentandResults
Inthischapter,wepresenttheexperimentalsetupandresultsofourproposedmethodologyforfemoralfracturesegmentation.
A.Dataset
Weconductedexperimentsonadatasetof100digitalX-rayimagesacquiredfrompatientswithfemoralfractures.TheimageswereacquiredusingdifferentX-raymachinesandparametersandwereannotatedbyexperiencedradiologists.Thedatasetincludesvarioustypesoffemoralfractures,suchastransverse,oblique,comminuted,andspiralfractures.
B.ImplementationDetails
WeimplementedourproposedmethodologyusingMATLABR2020aonaWindows10PCwithanIntelCorei7-8700CPUand16GBRAM.Weusedawindowsizeof3x3fortheGLFanalysisandsettheC-Vlevelsetparameterstoα=1,β=0,γ=1,andλ=1.
C.PerformanceEvaluation
Weevaluatedtheperformanceofourproposedmethodusingthreemetrics:Dicesimilaritycoefficient(DSC),sensitivity,andspecificity.DSCmeasurestheoverlapbetweenthegroundtruthandthesegmentedregionandrangesfrom0to1,withhighervaluesindicatingbettersegmentationresults.Sensitivitymeasuresthetruepositiverate,whichistheratioofcorrectlydetectedfracturestoallactualfractures,whilespecificitymeasuresthetruenegativerate,whichistheratioofcorrectlyidentifiednon-fracturepixelstoallnon-fracturepixels.
Wecomparedourmethodwiththreestate-of-the-artsegmentationtechniques:Watershedtransformation,Regiongrowing,andActivecontour.Table1showsthequantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
|Method|DSC|Sensitivity|Specificity|
|-----------|-----------|-----------|-----------|
|Watershed|0.50±0.17|0.53±0.19|0.92±0.08|
|RegionGrowing|0.62±0.14|0.65±0.15|0.88±0.10|
|ActiveContour|0.69±0.11|0.72±0.13|0.84±0.12|
|ProposedMethod|0.87±0.06|0.89±0.07|0.97±0.04|
Table1:Quantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
TheproposedmethodachievedthehighestDSC,sensitivity,andspecificityvaluesamongallthesegmentationtechniques,indicatingitssuperiorperformanceindetectingfemoralfractures.ThesegmentationresultsofourproposedmethodareshowninFigure1.Thesegmentedregionsaccuratelydelineatethefemoralboneandthefractureregion,evenincasesofcomplexfractures.
D.Discussion
TheexperimentalresultsdemonstratetheeffectivenessofourproposedmethodologyinaccuratelysegmentingfemoralfracturesfromdigitalX-rayimages.ThecombinationofGLFanalysisandtheC-Vmodelallowsustodistinguishthefractureregionfromthesurroundingstructureswithhighaccuracyandefficiency.Theproposedmethodsignificantlyoutperformedthestate-of-the-arttechniquesintermsofDSC,sensitivity,andspecificity.
Onelimitationofourproposedmethodisthatitreliesontheaccuracyoftheinitialsegmentationofthefemoralbone.Incaseswheretheinitialsegmentationisinaccurateorincomp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 税务调查的重要准备事项试题及答案
- 医院高级工试题及答案
- 激光安全管理体系试题及答案
- 园区运营笔试题及答案
- 文化产业管理考试成功秘诀与试题及答案搭配
- 老年医学专科试题及答案
- 2024年春四年级语文下册第二单元语文园地二教案2新人教版
- 电流和电阻的试题及答案
- 九年级化学全册第七单元7.3钢铁的锈蚀与防护教案鲁教版
- 课堂教材分析
- 市政公用工程设计文件编制深度规定
- 物业基本服务礼仪培训完整版
- 新风系统的施工组织方案
- 义务教育英语课程标准(2022年版) (1)
- 百家姓全文带拼音打印版本
- 强夯试夯报告(共12页)
- 关于电商平台对入驻经营者的审核要求或规范文件
- 骨优导介绍PPT
- 道场迎请亡魂开五方科仪
- 毕业设计(论文)-四自由度工业机械手的设计
- 八下数学19.1.1-第1课时-常量与变量ppt课件
评论
0/150
提交评论