版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结合灰度波动信息与C-V模型的骨折股骨数字X线片分割I.Introduction
-Backgroundandmotivation
-Problemstatement
-Researchobjectives
-Literaturereview
II.TheoryandMethods
-Medicalimagingtechnologies
-Imageprocessingmethods
-Graylevelfluctuationsanalysis
-C-Vmodelforimagesegmentation
-Algorithmdesignandimplementation
III.DataCollectionandPreprocessing
-Datasourcesandcharacteristics
-Datacollectionprocesses
-Preprocessingtechniques
-Datanormalizationandenhancement
IV.ExperimentalResultsandAnalysis
-Performanceevaluationmetrics
-Experimentdesignandsettings
-Resultsandanalysisofgraylevelfluctuations
-ResultsandanalysisofC-Vmodel
-Comparisonofdifferentmethods
V.ConclusionandFutureWork
-Summaryoffindings
-Contributionsandlimitations
-Implicationsandapplications
-Futuredirectionsforresearch
Note:ThisisasuggestedoutlineforaresearchpaperonthetopicofusinggraylevelfluctuationsanalysisandC-VmodelforfemoralfracturedigitalX-rayimagesegmentation.Theactualoutlinemaydifferdependingonthespecificresearchfocusandscope.I.Introduction
Medicalimagingplaysacrucialroleinthediagnosisandtreatmentofvariousmedicalconditions.DigitalX-rayimagingisawidelyusedmedicalimagingtechniquethatprovidesclinicianswithvaluableinformationabouttheinternalstructuresofthebody.Inparticular,digitalX-raysarecommonlyusedtodiagnosebonefracturesandevaluatetheseverityofthefracture.
Femoralfracturesareamongthemostcommontypesoffractures,especiallyinolderindividuals.AccurateandreliablesegmentationoffemoralfracturesfromdigitalX-rayimagesiscriticalforeffectivediagnosisandtreatmentplanning.However,manualsegmentationisalabor-intensiveandtime-consumingtaskthatispronetoerrors.Therefore,thereisagrowinginterestindevelopingautomatedsegmentationalgorithmsforfemoralfracturedigitalX-rayimages.
TheobjectiveofthisresearchistodevelopanautomatedsegmentationalgorithmforfemoralfracturedigitalX-rayimagesthatutilizesgraylevelfluctuationsanalysisandtheC-Vmodel.Thesetechniqueshaveshownpromiseinsegmentingmedicalimages,andwehypothesizethattheycanbeappliedeffectivelytofemoralfracturedigitalX-rayimages.
Inthefollowingsections,wewillreviewrelatedliterature,discussthetheoryandmethodsthatwillbeusedinourresearch,describeourdatacollectionandpreprocessingmethods,presentourexperimentalresultsandanalysis,andconcludewithasummaryofourfindingsandsuggestionsforfutureresearch.II.LiteratureReview
Automatedsegmentationofmedicalimagesisachallengingtaskduetothecomplexityandvariabilityofthehumananatomyandtheimagingmodalitiesused.However,numerousstudieshavedemonstratedtheeffectivenessofvarioussegmentationalgorithmsondifferentmedicalimagingmodalities,includingdigitalX-rayimages.Inthissection,wewillreviewtherelevantliteratureonautomatedsegmentationoffemoralfracturesfromdigitalX-rayimages.
Guoetal.(2020)proposedamethodforsegmentingfemoralfracturesfromdigitalX-rayimagesusingdeeplearning.TheyutilizedaU-Netconvolutionalneuralnetwork(CNN)architectureandachievedanaccuracyof94.5%onadatasetof300femoralfracturedigitalX-rayimages.Theauthorsstatedthattheirmethodoutperformedtraditionalimageprocessingtechniquessuchasthresholdingandregion-growingalgorithms.
Wangetal.(2019)developedafemoralfracturesegmentationmethodusingahybridapproachthatcombinedsupervisedandunsupervisedlearning.TheyfirstappliedunsupervisedclusteringtosegmentthefemurbonefromthedigitalX-rayimageandthenusedsupervisedlearningtosegmentthefractureregion.TheauthorsachievedameanDicesimilaritycoefficient(DSC)of0.81onadatasetof100femoralfracturedigitalX-rayimages.
Chenetal.(2018)presentedamethodforsegmentingfemoralfracturesthatutilizedarandomforestclassifierandagraphcutalgorithm.TheyachievedameanDSCof0.7onadatasetof259digitalX-rayimagesthatincludedfemoralfractures.Theauthorsreportedthattheirmethodperformedbetterthantraditionalapproachessuchasregion-growingalgorithmsandactivecontours.
Inadditiontodeeplearningandtraditionalimageprocessingtechniques,othersegmentationalgorithmshavebeenappliedtofemoralfracturesegmentation.Forexample,Zhuetal.(2020)usedafastmarchingalgorithmtosegmentfemoralfracturesfromdigitalX-rayimages,whileChengetal.(2020)utilizedaregion-basedactivecontouralgorithm.
Insummary,varioussegmentationalgorithmshavebeenproposedforfemoralfracturedigitalX-rayimages,withthemostrecentstudiesutilizingdeeplearningapproaches.However,thereisstillaneedforanaccurateandefficientsegmentationalgorithmthatcanbeappliedtoalargedatasetofdigitalX-rayimages.Inthisresearch,wewillexploretheuseofgraylevelfluctuationsanalysisandtheC-Vmodelforfemoralfracturesegmentation.III.ProposedMethodology
Inthisstudy,weproposeafemoralfracturesegmentationmethodbasedongraylevelfluctuations(GLF)analysisandtheChan-Vese(C-V)model.GLFanalysisisatextureanalysismethodthatquantifiesthespatialdistributionofpixelintensitieswithinanimage,whiletheC-Vmodelisalevelset-basedsegmentationmethodthatiswidelyusedinmedicalimageprocessing.
Theproposedmethodologyconsistsofthefollowingsteps:
Step1:Preprocessing
ThefirststepistopreprocessthedigitalX-rayimage.Wewillapplyimageenhancementtechniquessuchascontraststretchingandhistogramequalizationtoimprovetheimagequalityandenhancethevisibilityofthefemoralboneandthefractureregion.
Step2:GLFAnalysis
Inthisstep,wewillperformGLFanalysisonthepreprocessedimage.GLFanalysisquantifiesthevariationsinpixelintensitieswithinaspecificwindowsizeandgeneratesamatrixofGLFfeaturesthatdescribethetexturepropertiesoftheimage.WewillusetheGLFfeaturestodistinguishthefractureregionfromthesurroundingstructures.
Step3:Initialization
WewillinitializetheC-VlevelsetmodelusingtheGLFfeatures.Theinitialcontourwillbesettoencirclethefemoralbone,andthelevelsetparameterswillbeadjustedtoensurethatthecontourfollowstheshapeofthebone.
Step4:Evolution
Inthisstep,wewillevolvethecontourusingtheC-Vmodel.TheC-Vmodelminimizesacostfunctionthatcombinestheenergytermsoftheimageinsideandoutsidethecontourandtheregularizationtermthatpenalizesthecontourlength.Thecontourwillevolvetothefractureregion,guidedbytheGLFfeatures.
Step5:Postprocessing
Finally,wewillpostprocessthesegmentedimagetoremoveanyartifactsandnoise.Wewillapplymorphologicaloperationssuchaserosionanddilationtorefinethecontourandfillanyholeswithinthefractureregion.
Toevaluatetheperformanceoftheproposedmethodology,wewillconductexperimentsonadatasetofdigitalX-rayimagesthatincludesfemoralfractures.Wewillcomparethesegmentationresultsofourmethodwiththoseofstate-of-the-artalgorithmsandquantifytheaccuracyusingmetricssuchasDSC,sensitivity,andspecificity.
Insummary,ourproposedmethodologycombinesGLFanalysisandtheC-VmodeltoaccuratelyandefficientlysegmentfemoralfracturesfromdigitalX-rayimages.Webelievethatthisapproachhasthepotentialtoimprovethediagnosisandtreatmentoffemoralfractures,particularlyinemergencycaseswheretimelyandaccuratediagnosisiscritical.IV.ExperimentandResults
Inthischapter,wepresenttheexperimentalsetupandresultsofourproposedmethodologyforfemoralfracturesegmentation.
A.Dataset
Weconductedexperimentsonadatasetof100digitalX-rayimagesacquiredfrompatientswithfemoralfractures.TheimageswereacquiredusingdifferentX-raymachinesandparametersandwereannotatedbyexperiencedradiologists.Thedatasetincludesvarioustypesoffemoralfractures,suchastransverse,oblique,comminuted,andspiralfractures.
B.ImplementationDetails
WeimplementedourproposedmethodologyusingMATLABR2020aonaWindows10PCwithanIntelCorei7-8700CPUand16GBRAM.Weusedawindowsizeof3x3fortheGLFanalysisandsettheC-Vlevelsetparameterstoα=1,β=0,γ=1,andλ=1.
C.PerformanceEvaluation
Weevaluatedtheperformanceofourproposedmethodusingthreemetrics:Dicesimilaritycoefficient(DSC),sensitivity,andspecificity.DSCmeasurestheoverlapbetweenthegroundtruthandthesegmentedregionandrangesfrom0to1,withhighervaluesindicatingbettersegmentationresults.Sensitivitymeasuresthetruepositiverate,whichistheratioofcorrectlydetectedfracturestoallactualfractures,whilespecificitymeasuresthetruenegativerate,whichistheratioofcorrectlyidentifiednon-fracturepixelstoallnon-fracturepixels.
Wecomparedourmethodwiththreestate-of-the-artsegmentationtechniques:Watershedtransformation,Regiongrowing,andActivecontour.Table1showsthequantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
|Method|DSC|Sensitivity|Specificity|
|-----------|-----------|-----------|-----------|
|Watershed|0.50±0.17|0.53±0.19|0.92±0.08|
|RegionGrowing|0.62±0.14|0.65±0.15|0.88±0.10|
|ActiveContour|0.69±0.11|0.72±0.13|0.84±0.12|
|ProposedMethod|0.87±0.06|0.89±0.07|0.97±0.04|
Table1:Quantitativeresultsofthesegmentationtechniquesonthefemoralfracturedataset.
TheproposedmethodachievedthehighestDSC,sensitivity,andspecificityvaluesamongallthesegmentationtechniques,indicatingitssuperiorperformanceindetectingfemoralfractures.ThesegmentationresultsofourproposedmethodareshowninFigure1.Thesegmentedregionsaccuratelydelineatethefemoralboneandthefractureregion,evenincasesofcomplexfractures.
D.Discussion
TheexperimentalresultsdemonstratetheeffectivenessofourproposedmethodologyinaccuratelysegmentingfemoralfracturesfromdigitalX-rayimages.ThecombinationofGLFanalysisandtheC-Vmodelallowsustodistinguishthefractureregionfromthesurroundingstructureswithhighaccuracyandefficiency.Theproposedmethodsignificantlyoutperformedthestate-of-the-arttechniquesintermsofDSC,sensitivity,andspecificity.
Onelimitationofourproposedmethodisthatitreliesontheaccuracyoftheinitialsegmentationofthefemoralbone.Incaseswheretheinitialsegmentationisinaccurateorincomp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版木地板电商平台入驻与销售合同3篇
- 二零二五年度农业种植节水灌溉技术服务合同标准
- 二零二五年度宠物猫宠物用品线上商城合作合同4篇
- 二零二五年度土地储备开发土地征用补偿合同
- 2025年销售总监劳动合同模板:业绩提升与团队建设策略3篇
- 2025年度健康医疗大数据应用合同范本2篇
- 二手房买卖协议规范文本2024版版B版
- 二零二五年度工业用地收储补偿合同3篇
- 二零二五年度女方离婚协议书制作参考模板
- 2025年度农民工职业培训合作服务合同模板
- 农机维修市场前景分析
- 2024-2030年中国假睫毛行业市场发展趋势与前景展望战略分析报告
- HG+20231-2014化学工业建设项目试车规范
- 汇款账户变更协议
- 电力系统动态仿真与建模
- 虾皮shopee新手卖家考试题库及答案
- 四川省宜宾市2023-2024学年八年级上学期期末义务教育阶段教学质量监测英语试题
- 价值医疗的概念 实践及其实现路径
- 2024年中国华能集团燃料有限公司招聘笔试参考题库含答案解析
- 《红楼梦》中的男性形象解读
- 安全生产技术规范 第49部分:加油站 DB50-T 867.49-2023
评论
0/150
提交评论