




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心2.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则()A.2020 B.4038 C.4039 D.40403.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则4.抛物线的焦点为,点是上一点,,则()A. B. C. D.5.已知复数,若,则的值为()A.1 B. C. D.6.己知,,,则()A. B. C. D.7.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像8.已知,,是平面内三个单位向量,若,则的最小值()A. B. C. D.59.等比数列若则()A.±6 B.6 C.-6 D.10.是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为()A. B. C. D.11.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.12.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.14.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____.15.已知,则______,______.16.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.18.(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.19.(12分)已知函数.(1)设,若存在两个极值点,,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).20.(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.21.(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.(Ⅰ)求证:;(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.22.(10分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.2、D【解析】
计算,代入等式,根据化简得到答案.【详解】,,,故,,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.3、D【解析】试题分析:,,故选D.考点:点线面的位置关系.4、B【解析】
根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.5、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.6、B【解析】
先将三个数通过指数,对数运算变形,再判断.【详解】因为,,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.7、B【解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.8、A【解析】
由于,且为单位向量,所以可令,,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果.【详解】解:设,,,则,从而,等号可取到.故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.9、B【解析】
根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.10、D【解析】
首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、、分别为、、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,,所以四棱锥底面的高为,.故选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.11、B【解析】
根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.12、C【解析】
根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:【点睛】本题考查算法中的语言,属于基础题.14、【解析】
做中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积.【详解】解:如图做中点,的中点,连接,由题意知,则设的外接圆圆心为,则在直线上且设长方形的外接圆圆心为,则在上且.设外接球的球心为在中,由余弦定理可知,.在平面中,以为坐标原点,以所在直线为轴,以过点垂直于轴的直线为轴,如图建立坐标系,由题意知,在平面中且设,则,因为,所以解得.则所以球的表面积为.故答案为:.【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.15、【解析】
利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,,,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.16、【解析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【点睛】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,②①-②得,即,故.【点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.18、(1);(2).【解析】
(1)由已知短轴长求出,离心率求出关系,结合,即可求解;(2)当直线的斜率都存在时,不妨设直线的方程为,直线与椭圆方程联立,利用相交弦长公式求出,斜率为,求出,得到关于的表达式,根据表达式的特点用“”判别式法求出范围,当有一斜率不存在时,另一条斜率为,根据弦长公式,求出,即可求出结论.【详解】(1)由得,又由得,则,故椭圆的方程为.(2)由(1)知,①当直线的斜率都存在时,由对称性不妨设直线的方程为,由,,设,则,则,由椭圆对称性可设直线的斜率为,则,.令,则,当时,,当时,由得,所以,即,且.②当直线的斜率其中一条不存在时,根据对称性不妨设设直线的方程为,斜率不存在,则,,此时.若设的方程为,斜率不存在,则,综上可知的取值范围是.【点睛】本题考查椭圆标准方程、直线与椭圆的位置关系,注意根与系数关系、弦长公式、函数最值、椭圆性质的合理应用,意在考查逻辑推理、计算求解能力,属于难题.19、(1)证明见解析;(2).【解析】
(1)先求出,又由可判断出在上单调递减,故,令,记,利用导数求出的最小值即可;(2)由在上不单调转化为在上有解,可得,令,分类讨论求的最大值,再求解即可.【详解】(1)已知,,由可得,又由,知在上单调递减,令,记,则在上单调递增;,在上单调递增;,(2),,在上不单调,在上有正有负,在上有解,,,恒成立,记,则,记,,在上单调增,在上单调减.于是知(i)当即时,恒成立,在上单调增,,,.(ii)当时,,故不满足题意.综上所述,【点睛】本题主要考查了导数的综合应用,考查了分类讨论,转化与化归的思想,考查了学生的运算求解能力.20、(1)证明见详解;(2)【解析】
(1)求出函数的导函数,由在处取得极值1,可得且.解出,构造函数,分析其单调性,结合,即可得到的范围,命题得证;
(2)由分离参数,得到恒成立,构造函数,求导函数,再构造函数,进行二次求导.由知,则在上单调递增.根据零点存在定理可知有唯一零点,且.由此判断出时,单调递减,时,单调递增,则,即.由得,再次构造函数,求导分析单调性,从而得,即,最终求得,则.【详解】解:(1)由题知,∵函数在,处取得极值1,,且,,,令,则为增函数,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,则令,则,,,在上单调递增,且,有唯一零点,且,当时,,,单调递减;当时,,,单调递增.,由整理得,令,则方程等价于而在上恒大于零,在上单调递增,.,∴实数的取值范围为.【点睛】本题考查了函数的极值,利用导函数判断函数的单调性,函数的零点存在定理,证明不等式,解决不等式恒成立问题.其中多次构造函数,是解题的关键,属于综合性很强的难题.21、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)推导出BC⊥CE,从而EC⊥平面ABCD,进而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,从而BD⊥AC,进而四边形ABCD是菱形,由此能证明AB=AD.(Ⅱ)设AC与BD的交点为G,推导出EC//FG,取BC的中点为O,连结OD,则OD⊥BC,以O为坐标原点,以过点O且与CE平行的直线为x轴,以BC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.【详解】(Ⅰ)证明:,即,因为平面平面,所以平面,所以,因为,所以平面,所以,因为四边形是平行四边形,所以四边形是菱形,故;解法一:(Ⅱ)设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,取的中点为,连接,则,因为平面平面,所以面,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超市新员工培训知识
- 《人类的“老师”》课件-1
- 25年三月份私人引力子探测员设备灵敏度保证条款
- 2025年山东货运从业资格考试题目大全答案及解析
- 2025年度第一季度应急储备车辆轮换处置验收协议
- 2025年外债及配套人民币借款合同协议书
- 2025四月股半导体研发团队2025期权池分配协议细则
- 2025合同能源管理协议
- 塔吊安全管理协议书二零二五年
- Vad血管通路装置安全护理
- 2024年中国酸奶乳品市场调查研究报告
- 外研版(2025新版)七年级下册英语Unit 3 学情调研测试卷(含答案)
- 2024重庆市中考语文A卷真题写作话题解读与参考范文-漫画“各有千秋”、“给校长的一封信”
- 《航模基础知识》课件
- 劝学类3篇文言文中考语文复习
- 跟着音乐游中国(广州大学)知到智慧树章节答案
- 存款保险知识培训
- “言”“意”相融 让文学学习走向深入
- 白酒代理招商方案
- 物流公司文件记录保存制度
- 输水管线工程施工方案
评论
0/150
提交评论