超高速面扫描相机行业发展基本情况_第1页
超高速面扫描相机行业发展基本情况_第2页
超高速面扫描相机行业发展基本情况_第3页
超高速面扫描相机行业发展基本情况_第4页
超高速面扫描相机行业发展基本情况_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

超高速面扫描相机行业发展基本情况

机器视觉行业发展现状随着国内机器视觉相关企业研发技术水平的提高、国产品牌智能制造设备商实力的增强,国产品牌机器视觉企业可以利用更为先进的生产制造技术不断加快产品更新换代的速度。同时,国产品牌企业还可以利用自身更便捷、灵活、及时的服务特点,在稳固占据机器视觉核心部件中低端市场的优势地位的基础上,加速抢占高端机器视觉部件市场,从而获得更大规模的发展空间。机器视觉是指利用计算机视觉技术、图像处理技术、模式识别技术等,实现机器自动获取外界图像信息并作出相应反应的技术。机器视觉的应用可以大大提高工厂的生产效率,从而提升企业的竞争力。中国机器视觉行业发展前景广阔,未来将继续保持良好发展态势。随着人工智能技术的发展,机器视觉行业将会受到更多的关注,从而推动其发展。中国机器视觉行业前景预测机器视觉虽然只有几十年发展时间,但随着全球新一轮科技革命与产业变革浪潮的兴起,机器视觉行业顺势迎来快速发展。机器视觉的应用已经从最初的汽车制造领域,扩展至如今消费电子、制药、食品包装等多个领域实现广泛应用。从产业发展生命周期来看,国际机器视觉产业已经处于成熟期,预期未来几年内,欧美日机器视觉技术仍将不断有创新,国际机器视觉市场有望保持现有市场规模,并继续增长。国内机器视觉产业目前还处于成长期,从近几年的情况来看,我国机器视觉产业已积累足够技术、市场、行业经验,已步入快速发展阶段。机器视觉产业链主要由上游原材料零部件、中游装备制造以及下游终端应用行业构成。从深度来看,机器视觉的应用覆盖产业链的多个环节。以手机的制造为例,机器视觉可应用在结构件生产、模组生产、成品组装、锡膏和胶体的全制造环节,例如IPhone生产全过程就需要70套以上的机器视觉系统。从广度上看,机器视觉的下游行业众多,包括汽车、3C电子、半导体、食品饮料、光伏、物流、医药、印刷、玻璃、金属、木材等。近期工业自动化中机器视觉技术的发展不断更新迭代,使得其在智能制造中的地位也是日渐突显,推动了工业自动化、人工智能、智能制造等行业的进步,为各个领域都带来更强劲的发展动力。随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,机器视觉是一门学科技术,广泛应用于生产制造检测等工业生产制造领域,用来保证产品质量、控制生产流程、感知环境等,也是集成自动化解决方案的核心构成要素。机器视觉的这种不断增长的扩散正在与将工业系统连接到物联网(IoT)的趋势融合。随着传感器变得越来越智能化(部分地由支持的计算机视觉算法驱动),因此生成的数据为工业系统的运行提供了宝贵的见解。反过来,这又开辟了监视设备的新方式,将自主机器人系统(如无人机)连接到物联网基础设施。目前,国内机器视觉主要竞争企业包括Keyence(基恩士)、Cognex(康耐视)、TeledyneDalsa、Basler、海康机器人、华睿科技、大恒图像、奥普特、合肥埃科光电等。机器视觉是人工智能正在快速发展的一个分支,不同权威机构对机器视觉的定义略有差异,但简单说来,机器视觉就是用机器代替人眼来做检测、判断和控制。机器视觉基于仿生的角度发展而来,比如模拟眼睛是通过视觉传感器进行图像采集,并在获取之后由图像处理系统进行图像处理和识别。由于工业自动化生产日益增长的技术需求,全球机器视觉行业60年代开始兴起,起步较早,90年代发展已趋于成熟,现阶段继续保持高速发展。中国机器视觉行业伴随中国工业化进程的发展而崛起,于90年代末起步,相对全球较晚,目前正处于快速发展阶段。2019年我国机器视觉市场规模65.5亿元(不包含计算机视觉市场),同比增长21.8%。2014-2019年复合增长率为28.4%,并预测到2023年中国机器视觉市场规模将达到155.6亿元。当前我国经济向新动能、新经济转换,3C、汽车、光伏半导体等众多行业对机器视觉技术迸发旺盛需求,由此看来,中国机器视觉市场潜力巨大。十四五期间,中国将进一步深化产业结构调整,推进制造业的科技创新和智能制造水平,着力从要素驱动向技术及创新驱动转变。通过强化研发、设计能力,提高配套能力、基础工艺、基础材料、基础元器件的研发和系统集成水平,促进细分市场、专业化分工和集群发展,推动先进装备制造业和高新技术产业从以组装为主向自主研发制造为主转变。产业结构的转型升级以及制造业的进一步智能化将推动机器视觉行业的发展。中国机器视觉行业市场概况中国市场已成为全球机器视觉市场规模增长最快的市场之一。根据中国机器视觉产业联盟的统计,中国机器视觉行业的销售额从2018年的101.80亿元增长至2020年的144.20亿元,复合增长率达19.02%。得益于宏观经济回暖、新基建投资增加、数据中心建设加速、制造业自动化推进等因素,预计2020年至2023年,中国机器视觉行业的销售额将以27.15%的复合增长率增长,至2023年销售额将达296.00亿元。从下游应用行业角度考虑,根据中国机器视觉产业联盟统计,机器视觉已经在电子/电气、半导体、汽车、印刷包装、食品加工等领域得到广泛应用。其中,电子/电气行业是目前中国机器视觉行业最大的下游应用领域,2020年其销售额占比为52.90%。机器视觉被广泛应用在工业制造领域,制造业的发展将推动机器视觉的发展。根据国家统计局统计,2021年我国国内生产总值突破114.37万亿元,为全球第二大经济体;而作为经济支柱,我国制造业为我国GDP增长做出了巨大的贡献。2010年我国制造业增加值首次超过美国,中国成为全球制造业第一大国,2021年我国制造业GDP增加值已达31.38万亿元。机器视觉为机器植入眼睛和大脑,让机器取代人工,帮助制造业实现自动化和智能化,是现代化制造提质、增效、降本、减排的推动力,是推动智能制造的关键引擎。随着我国进入全面推进智能制造阶段,机器视觉将向全行业覆盖,应用市场需求急剧扩增,因此智能制造为机器视觉提供了巨大的需求牵引,是机器视觉的重大战略机遇。机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号。视觉是人类观察世界和认知世界的最重要途径,在不需要进行身体接触的情况下,就能够直接与周遭环境进行智能的交互。长期以来,科学家们一直试图将视觉能力赋予机器,帮助它们看清世界。作为实现工业自动化和智能化的关键核心技术,机器视觉也已经成为人工智能领域发展最快的分支之一。机器视觉行业面临的机遇与挑战(一)机器视觉行业面临的机遇1、机器视觉行业国家政策鼓励行业为机器视觉行业,应用于智能制造的各个领域。近年来,国家为了大力支持和鼓励智能制造产业的高质量发展,先后颁布了一系列的鼓励及支持政策。其中,2021年12月,工信部、发改委等八部门发布的《十四五智能制造发展规划》中提到深入实施智能制造工程,着力提升创新能力、供给能力、支撑能力和应用水平,加快构建智能制造发展生态,持续推进制造业数字化转型、网络化协同、智能化变革,构建虚实融合、知识驱动、动态优化、安全高效、绿色低碳的智能制造系统。2021年8月,国资委召开会议,强调要把科技创新摆在更加突出的位置,针对工业母机、高端芯片、新材料、新能源汽车等加强关键核心技术攻关。2021年3月,第十三届全国人大第四次会议发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中提到培育壮大人工智能、大数据、区块链、云计算、网络安全等新兴数字产业,提升通信设备、核心电子元器件、关键软件等产业水平。这些政策的颁布为智能制造在我国的发展树立了鲜明的发展方向。整体来看,智能制造对设备的精度、速度、环境适应性等条件都提出了更高要求,这种要求也是机器视觉行业发展的驱动力。智能制造行业中关键技术领域的提升离不开机器视觉,核心产品的创新也离不开机器视觉,机器视觉作为智能制造的眼睛,为其提供强有力的技术支持,也为其进一步发展营造一个有利的客观环境。此外,自动化设备作为机器视觉产品的重要载体,机器视觉系统为这些自动化设备收集、理解应用信息提供了一个主要途径,自动化智能设备只有在仔细分析及评估这些信息后,才能触发相应机器设备进行可靠的、有智慧的、甚至自主的行动。因此,随着《中国制造2025》战略的推进,我国工业制造领域的自动化和智能化程度的加深,机器视觉将得到更广泛的发展空间。2、机器视觉行业提供巨大发展潜力一方面,由于我国国内机器视觉企业起步时间较晚,在技术方面的实力有待提升;另一方面,国内很多终端用户出于使用习惯和安全性考虑,通常会要求设备制造商采用进口或国际品牌产品,使得国际品牌机器视觉企业在我国市场上仍旧占据优势地位。但近年来,随着中美贸易战、新冠疫情等不确定性事件频发,国内装备制造企业在采购海外品牌产品时,会发生交货周期长、售后服务不及时等问题,从而在一定程度上影响这些企业的交付进度,令企业蒙受损失。未来,随着国内机器视觉相关企业研发技术水平的提高、国产品牌智能制造设备商实力的增强,国产品牌机器视觉企业可以利用更为先进的生产制造技术不断加快产品更新换代的速度。同时,国产品牌企业还可以利用自身更便捷、灵活、及时的服务特点,在稳固占据机器视觉核心部件中低端市场的优势地位的基础上,加速抢占高端机器视觉部件市场,从而获得更大规模的发展空间。3、机器视觉行业下游需求持续旺盛目前,机器视觉已应用在国民经济的众多行业中,根据机器视觉产业联盟2021年度对153家企业调查的数据统计,我国机器视觉应用以制造业为主,2021年销售额占比为79.8%,其中又以电子行业、新型显示、汽车、电池等行业为主。同时,在全球疫情爆发的大背景下,生物医药、交通运输、智能制造等领域对机器视觉的需求量大增。预计未来,得益于我国经济快速回暖、城镇化进程的加速、居民生活水平的进一步提高,机器视觉行业的主要下游应用领域将继续保持较快增长。下游应用行业规模的扩大以及智能制造的推进,将会吸引更多行业引入机器视觉参与生产制造。同时,随着技术的进步和经济的发展,一些新兴产业的兴起,也有望进一步拓展机器视觉的市场空间。纵向上,机器视觉在现有领域的深度拓展将带来新的行业增长。机器视觉在各行业的初始应用往往配置在要求较高的生产环节的检测中。随着机器视觉技术的普及、成本的下降,机器视觉在生产环节中的应用逐渐得到深化,充分发挥除机器视觉定位、测量和识别之外的复杂检测功能。以手机的生产制造为例,机器视觉从最初只应用在个别关键环节的检测中,发展到如今,已经几乎应用在从零部件到模组再到整机等各个生产环节,参与从零部件到整机装配的手机制造全工艺流程。类似手机行业的这种深化过程,将会出现在其他行业中,从而进一步扩大机器视觉的行业应用市场空间。(二)机器视觉行业面临的挑战1、机器视觉行业起步较晚,基础相对薄弱机器视觉行业在我国起步较晚,目前,国内专注于机器视觉领域的相关企业规模普遍偏小,相关产品质量有待提高及进步,导致产业链整体基础较为薄弱。2、机器视觉行业高端技术研发人才不足近年来,我国机器视觉行业虽然在飞速发展,但行业内国产品牌企业主要在中低端市场相互竞争,无法通过品牌溢价获得高额利润,使得企业难以提供充足的资金对相关技术的创新及人才的培养。另一方面,高校等科研机构与机器视觉行业相关的光学、算法等复合型人才的培养不仅需要大量的理论知识学习,还需要在实践生产中进行探索研发,而行业内企业难以提供合适、完善的实践环境。因此,我国在机器视觉领域的高端技术研发人才存在大量缺口,难以为行业提供充足的人才资源,将对行业的未来发展构成一定的挑战。3、机器视觉行业供应链安全的不确定性,制约发展速度我国在图像传感器、处理器相关领域的发展还有待完善,因此相关原材料的需求主要依赖于进口。未来,随着全球贸易不确定性对供应链安全保障的影响,将会对行业快速发展形成一定的挑战。机器视觉行业新技术未来发展趋势高精度光学成像是机器视觉行业始终追求的技术发展目标。高精度光学成像需要光源、镜头、相机、图像采集卡等各部分的精密配合,要求新型光源、更全面的波长覆盖和创新的光源布局等光源技术,以及提供更大靶面和更小像元的新型镜头和相机产品。高精度光学成像技术增强了机器视觉的图像信息获取能力,通过多样化光学成像技术,获取到传统成像中难以获取的图像信息,并通过高速、高灵敏度的图像采集技术深度挖掘图像中隐含的内部信息,满足更高分辨率、更多维度、更大空间带宽积的光电成像需求。目前机器视觉主要采用的2D机器视觉技术仅能获取固定平面内的形状及纹理信息等二维图像,这主要基于物体在灰度或者彩色图像中对比度的特征提供处理分析结果。2D机器视觉技术的缺点包括无法提供物体高度、平面度、表面角度、体积等三维信息;容易受光照条件变化的影响;对物体的运动比较敏感等。随着智能制造变革来临,面对复杂的物件辨识和尺寸量度任务,以及人机互动所需要的复杂互动,2D视觉在精度和距离测量方面均出现技术限制。3D机器视觉技术相对于2D技术提供了更丰富的被摄目标信息,可以识别物体的深度、形貌、位姿等3D信息。3D技术提供了丰富的三维信息,使机器能够感知物理环境的变化,并相应地进行调整,从而在应用中提高了灵活性和实用性,扩大了机器视觉的应用场景。多光谱技术,利用像元级的镀膜技术实现对不同波长光谱信号的采集,从而得到高分辨率的多/高光谱的图像信号,大大简化了视觉系统的光学部件复杂性。光谱技术推动机器视觉实现目标的多种特征分析。随着机器视觉的快速发展和普及,机器视觉产品已经广泛应用于3C、锂电池、半导体、PCB、新型显示、汽车零配件、光伏、物流、医药、包装印刷、轨道交通等众多产业中。各行业样本的复杂性要求机器视觉从可见光光谱到非可见光光谱、从单一光谱到多光谱,不仅需要实现目标的外观检测,也需要实现目标的材料成分、颜色、温度等复杂特征的分析。多光谱技术利用光的衍射和折射特性,通过光栅、棱镜等分光元件,获取到不同谱段的有效信号,实现目标高维信息参量获取,并通过相关分析算法将谱域信号与测量需求建立联系,如物质成分、温度、三维面型等,进而满足复杂多样化的测量需求。在工业领域中,随着机器视觉的应用逐渐深入,自动化程度越来越高,机器视觉核心部件的智能化程度不断提升,集成更多边缘智能已经成为工业相机未来发展的主要趋势之一。智能工业相机是一个兼具图像采集、图像处理和信息传递功能的小型机器视觉检测系统,是一种嵌入式计算机视觉检测系统,提供了具有多功能、模块化、高可靠性、易于实现的机器视觉解决方案。它将图像传感器、处理模块、通讯模块和其他外设集成到一个单一的相机内,由于这种一体化的设计,可降低系统的复杂度,并提高可靠性,同时系统尺寸大大缩小,拓宽了机器视觉的应用领域。智能工业相机可以在特定的应用环境中实现图像处理并利用内嵌的人工智能算法做出逻辑判断,为自动化场景提供无需人工干预的智能方案,是工业自动化领域集成边缘智能的重要手段。通过对智能芯片和算法的集成,智能工业相机具有强大的软硬件功能,未来将在各个工业领域中发挥重要作用,例如可应用于高端工业检查、产品分类、质量检测、视觉传感器网络、条码阅读、入侵检测和交通监控等工业过程。深度学习方法作为传统神经网络的拓展,近年来在语音、图像、自然语言等的语义认知问题上取得巨大的进展,为解决机器视觉大数据的表示和理解问题提供了通用的框架。随着机器视觉在不同行业应用的扩展,传统算法的机器视觉在针对缺陷类型复杂化、细微化、背景噪声复杂等外观检测以及分选定级应用场景时,呈现通用性低、不易复制、对使用人员要求高等缺点。基于深度学习的机器视觉采用更复杂的规则实现精细的量化评估,凭借AI深度学习更强的特征提取能力为机器视觉提供更多应用可能,使得机器视觉能够解决更加复杂背景下的定位与识别、工件的缺陷检测和分割、畸变物体的分类、难辨字符与文本的读取等复杂的工作任务。随着工业机器视觉的检测对象越来越复杂,应用越来越广泛,机器视觉应用逐渐从传统机器视觉向基于深度学习的机器视觉过渡,机器视觉的应用领域也会因深度学习技术而得到极大扩展。此外,基于深度学习方法的机器视觉系统对机器视觉核心部件的软硬件水平提出了更高要求,与深度学习算法相匹配的工业相机和图像采集卡等机器视觉核心部件的技术发展将成为机器视觉未来发展趋势之一。机器视觉行业应用领域目前主要识别的内容有人、车辆等各类目标物。在工业领域对带有明确信息的标识,OCR、一维码、二维码等常有识别需求。医疗数据中有超过90%的数据来自医疗影像。医疗影像领域拥有孕育深度学习的海量数据,医疗影像诊断可以辅助医生,提升医生的诊断的效率。在工业应用中,利用机器视觉对部件或产品进行定位。这种定位应用多会辅助机器人或者其他执行机构以实现相关的动作。一般来说,定位可协助机器人实现喷漆、涂胶、抓取、焊接等动作。机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。2021年中国工业机器视觉市场规模达到150亿元,其中国内品牌超过75亿元,实现对国际品牌的超越。我国机器视觉行业市场规模随着工业自动化技术的不断发展,机器视觉在工业领域的应用越来越多。从全球市场来看,MarketsandMarkets数据显示,2021年全球机器视觉市场规模约为804亿元,同比增长12.15%。GGII预计至2025年该市场规模将超过1200亿元。2022年至2025年复合增长率约为13%。随着全球制造中心向中国转移,中国已成为国际机器视觉厂商的重要目标市场。2021年,国内3C电子、新能源、快递物流等行业的蓬勃发展拉动了相关企业的扩产需求,机器视觉需求增长明显。GGII数据显示,2021年中国机器视觉市场规模138.16亿元(该数据未包含自动化集成设备规模),同比增长46.79%。其中,2D视觉市场规模约为126.65亿元,3D视觉市场约为11.51亿元。根据GGII预测,至2025年我国机器视觉市场规模将达到349亿元,其中,2D视觉市场规模将超过291亿元,3D视觉市场规模将超过57亿元。机器视觉广泛应用于3C电子、新能源、汽车、医药医疗、半导体、快递物流等众多行业,在提高生产效率的同时,为我国制造业智能化转型升级提供重要支撑。机器视觉行业发展历程从全球范围来看,机器视觉行业起源于20世纪70年代,发展至今,行业已经历五个发展阶段。第一阶段,1969-1979年,在成像传感器诞生的驱动下,机器视觉进入产业萌芽期。1969年美国贝尔实验室成功研制出CCD传感器,可以直接把图像转换为数字信号并存储到电脑中参与计算和分析,从而为机器视觉的产生奠定了基础;第二阶段,1980-1989年,在需求应用的驱动下,机器视觉进入起步期。机器视觉概念首次在产业界被提及,加拿大的TeledyneDalsa、英国的E2V以及美国的Cognex(康耐视)等相关知名企业诞生;第三阶段,1990-1999年,随着需求端应用的不断发展,机器视觉行业进入成长波动期。其中,1990

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论