数学分析简明教程答案_第1页
数学分析简明教程答案_第2页
数学分析简明教程答案_第3页
数学分析简明教程答案_第4页
数学分析简明教程答案_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十八章§1(1)f(x,y)(xy1)2(2)f(x,y)3axyx3y3(a0)1 x ya1 x ya b2f(x,y)e2x(xy22y)f(x,y)sinxcosycos(x

(0x,y 2x2yf(x,y)x2yfx(x,y)2(xy1)0f解(1)由f

y(x,y)2(xy1)0

yx1fxx2fxy2fyy2D0fyxf(xy)0yx1f(xy)0yx1f(xy也是最小值0(2)由

(x,y)3ay3x20 解出稳定点为(0,0),(aafy(x,y)3ax3y20在点(0,0)a11

fxx(0,0)0,

fxy(0,0)3aa22fyy(0,00D

29a20故(0,0)不是极值点.在点(aaa11

fxx(a,a)6a,

fxy(a,a)3a,a22fyy(a,a)6aD

227a20,

6a0f(x,y在(aaf(aa)a3

0,

,

0D

240f(x,y

a

b

3ab23233333(4)令

(x,y)e2x(12x4y2y2)01 解得稳定点1

fy(x,y)2e2x(1y)0 a11

fxx(2,1)2e0,a22fyy(2,1)2e0,a12fxy(2,1)0D

24e20f(xy在1,1

e121fx(x,y)cosxsin(xy)0 f(5)令f33

y(x,y)sinysin(xy)0

解得稳定点为 )3a11

fxx(

,)6

0,a22

fyy(

,)6

30,a12

fxy(

,) 3 3Da

a290,故f(x,y)在(,)取极大值为 311

3 f(x,y)

0x2x2yx2y

x2y21x2yx2yfx2yx2y

0由于f(xy)x2y21上的点取值0,而f(xy)0,故f(x,y)在圆周1x2y21上的点取极小值也是最小值0P(0,01x2yf(x,x2y

1)21

f(0,0),

2x2x2 yax2bxc(xyi1,2,nab n解f(abc)(ax2bxcy)2abcn 并令它们等于0f

(ax2

cy)x20ii iif

(ax2

cy

0 ii iif

(ax2

icy)0 iii iiabcxixi

xxxxx,i ia

nx3

x2

nx

nxy

n

n

iiiax2bxcnyiii

A1(x1y1A2(x2y2,An(xnyn,n个点距离的平方和最小.解P(xynnf(x,y)[(xx)2(yy)2n

f

(xx)0,f

i(yy)0ii i得稳定点1n

x,1ini

yi)(x,y点即为最小值点.因而点(x,yn(1)f(x,y)x2y2,D(x,y)x2y2(2)f(x,y)x2xyy2,D(x,y)xy(3)f(xyz)axbycz)e(x2y2z2)a2b2c20DR3fx(x,y)2x0f解(1)令f

y(x,y)2y0

D内的唯一稳定点(0,0)a11

fxx(0,0)20,

fyy(0,0)20,

fxy(0,0)0D

240(0,0)点,f(xyx2y24f(x,y)x2y2x2(4x2)2(x22)(x),x2令(x4x0x0,且(x40,故(xx0这就是函数f(xy)的最小值,其值为

f(0,2)4x2y0f(2,0)4,即函数在(2,0取最大值4fx(x,y)2xy0,f(2)令f

y(x,y)2yx0

解得唯一的稳定点(0,0)a11

fxx(0,0)20,

fyy(0,0)20,

fxy(0,0)D

250(0,0)

f(x,y)的极小值点,也是最小值点,最小值为f(0,0)0xy1y1x0x1f(x,y)(13x)23x2 x0x1f(1,0)f(0,1)1x1f(11)1 2 y1x1x0f(x,y)x2x1x0x1f(1,0)f(0,1)1x1f(11)3 2 y1x0xf(x,y)x2x1x0x1f(1,0)f(0,1)1x1f(1,1)12Df(xyf(0,0)0,取最大值(3)

f(x,y,z)[a2x(axbycz)]e(x2y2z2)0xyz22yz

(x,y,z)[b2y(axbycz)]e(xyz)0,(x,y,z)[c2z(axbycz)]e(x2y2z2)0,

2(a2(a2b2c2

2(a22(a2b2c22(a2b2c22(a2b2c2

),2(a2b22(a2b2c22(a2b2c2a2b2c2Hessef(xa2b2c2a2b2ca2b2c2

2,最小值为f(P2) e2f(xyAx22BxyCy22Dx2EyFR2A0,B2ACf(xy)xy11在0x,y fx(x,y)2Ax2By2D0f证明(1)令f

y(x,y)2Bx2Cy2E0B

BACB20CP0(x0y0a11

fxx(P0)2A0,

fyy(P0)2C,

fxy(P0)2BD

24B24AC0f(xyP0f(x,yR20(2)f2 (x,y)yf2x1

0

fy(x,y)xy

0a11

fxx(P0)20,

fyy(P0)20,

fxy(P0)1且Da a

30f(xyxy11P(1,111

f(xy在0x,yF(x,yzF(x0,y0,z0)0,Fz(x0,y0,z0)0F(xyz)0zf(xy在(x0y0由x2y2z22x2y4z10z

f(x,y解取极值的必要条件为在(x0y0

f(x0,y0)Fx(x0,y0,z0)0

(x0,y0

Fz(x0,y0,z0

f(x,y

F(x,y,z 0

00(x,y

Fz(x0,y0,z0 0Fx(x0y0z0)0Fy(x0y0z0)0为在(x0y0取得极值的必要条件.F(x,yz)0x,y二次求导,有FFz0 z Fy

0

z

FxxFxyxFzxxFzz(x

Fzx

0

z

FxyFxzyFzyxFzzxyFzxy0 z

FyyFyzyFzyyFzz(y并利用在(xyz0z0

Fzy

0 F(x

Fxy(x0,y0,z0 0(x0,y0

Fz

,

,

(x0,y0

Fz

,

,z0Fyy(x0,y0,(x0,y0

Fz(x0,y0,z0因此在(x0y0z

f(x,y)(Fxx(x0,y0,z0))(Fyy(x0,y0,z0))(Fxy(x0,y0,z0))2Fz(x0,y0,z0

Fz(x0,y0,z0

Fz(x0,y0,z000

,

,

)Fyy(x0,

,z0)F2

,

,z0

0z0z0

,y0,z0F(xyz

(x,y,

)F2(x,y,

)0Fxx(x0y0z0)0(

Fz(x0,y0,z0Fyy(x0y0z0)0Fxx(x0y0z0)0(或Fyy(x0y0z0)0Fz(x0,y0,z0

Fz(x0,y0,z0

Fz(x0,y0,z0

,

,

,

,

)F2

,

,

00取极值,为00F(xyz)x2y2z22x2y4z10Fx(x,y,z)2x20F (x,y,z)2y20FFxx2,Fxy0,Fyy2因为DF F

40(在P与 ),且F(P)(2z4)

8xx

2Fz(P2)2z4|P82由于Fxx(P1)20P(1,1,6取极大值6;而Fxx(P2)20F(P

F(P (1)(xy)2(yz)2(zx)23(2)z2xyzx2xy290解(1)F(xyz)(xy)2yz)2zx)23Fx(x,y,z)2(xy)2(zx)0F (x,y,z)2(xy)2(zy)0F31F(x,y,z)0311

12

12

12

Fxx4,Fxy2,Fyy4D

212012Fz(P1)[2(yz)2(zx)]|P4,Fz(P2)[2(yz)2(zx)]12

4因此,Fxx(P1)10(11取极小值3;Fxx(P2)10(1,11取极大值 12

2

Fz(P2 (2)F(xyz)z2xyzx2xy29F(x,y,z)yz2xy20Fy(x,y,z)xz2xy0F(x,y,z)0

Fxx2,Fxyz2y,Fyy2xP1(0,0,3Fxx(P12,Fxy(P13,Fyy(P10D90P2(0,0,3Fxx(P22,Fxy(P23,Fyy(P20,D90,故函数P20,0,3)不取极值;P3(0,3,3Fxx(P32Fxy(P33Fyy(P30,D90P4(0,3,3Fxx(P42,Fxy(P43,Fyy(P40,D90,故函数P40,3,3)也不取极值;

Fxx(P52,Fxy(P50,Fyy(P52,D4025Fz(P5)(2zxy)]|P25

Fxx(P5)

202 2

取极小值

Fxx(P62,Fxy(P60,Fyy(P62,D406Fz(P62zxy|P6

2Fxx(P6)2

20

Fz(P6 2取极大值 2在已知周长为2p的一切三角形中,求出面积为最大的三角形.解x,y,则另一边长为2pxyp(px)(p(px)(py)(p(2pxp(px)(py)(xyss2s2p(px)(py)(xyp)F(x,y)令Fx(x,y)p(py)(2p2xy)0F (x,y,z)p(px)(2px2y)0F解得稳定点2p3

2p.由于驻点唯一,实际问题又有最大值,故最大值点为2p

2p)3z2p,即在已知周长为2p3的倾角x(见下图.解s1

s xsin(242x242x2xcos)2sx(244x2xcos)sin0s 24xcosx2cos22x2cos0s 解得稳定点为

3

3倾角x8cm3§2

xyx2y21;

x2y2xy10

x2y2zx2y2z211xy2 fxyzx2y2z21xyz0

ax2by22hxyx2y21;

x2y2z2,若(x2y2z22a2x2b2y2c2z2lxmynz0解(1)LagrangeL(xy)xy(x2y21Lx12x0Ly12y0x2y21由前两式得xy,代入最后一式解得稳定点P(2 2)与P 2 F(xy)x2y21F(xy)2yP,P 等于0x2y21PPyy(x g(x)xy(xdyxdg1dy

1

yx y

1ygx

2d2d2

222

112

0因此g(x)在x 处2222222

xy在P(2 2)处取得条件极大值f(P) 2 2函数在x22d2212220g(x)22x

处取极小值,这等价于2

fxyP2

22

处取得条件极小值22f(P2) 2LagrangeL(xy)x2y2(xy1Lx2x0L 2y0Lxy2

xy1011xy2P0211

1)2F(xy)xy1Fy(xy)10xy10yy(xg(x)x2y2xdy1dg2x2ydy

2x2y

22

401所以函数g在x 取极小值,这等价于1121f(P0)2

x2y2

1

处取得条件极小值作Lagrange函数L(x,y,z)x2y2z ,Lx12x0L 22y0LL 22z0Lyz2xP(1,22P(12,21 3 3 F(xyz)x2y2z21F(xyz)2zPP均不等于0,故方程 x2y2z21PPzz(xy g(x,y)x2y2z(x,y) xyyz

2x12x1,2z2x,

z,y22y2z2x2g

x2(x2z2 2g

1g在(,13

z2g3a

z2z2yz

z z2(y2z2z3

2 32

2180且 150,因此g(x,y)在(1,2)处取极大值,这等价

f(xyz)11

2 ,)f(,3

2,3

)3g在(13

3

12 2

21806且 150,故g(x,y)在(1,2)处取极小值,这等价于f(x,y,z)在P(

2

31

3,3,处取得条件极小值f( 3

)33 作Lagrange函数L(x,y) x

(xy2)yLL L

1λ0x10 y由前两式得

xy201x2y2yxxy1(yF(x,y)xy2Fy(xy)10xy20yy(xg(x,y)1x

,由约束条件 1,所以dg1 dy

1 dg

dy22 y2(x)

x2,

y3 y

40g(xx1f(xy在(1,1LagrangeL(xyz)xyz1Lxyz21x20

LL

xz21y20

xy21z20x2y2z21xyzxy21xz21yz21xyxy

21xz21yz2166xy1,z266或6xz6

6,y26或6yz6

6,x26f(xyzxyz,x2y2z21xyz0x,yz166 66

1.

616616

2626

)16若记F(xyz)x2y2z21G(xyz)xyz16(F,G)2

2z2(yz)(y,

x2y2z2P20,故方程组xyz

P2yy(x),zz(xg(x)xy(x)z(xdyyz

x ,z

y zdgyzxdy

zxydz

yz2y2zx2zxz2xy2x2,zd2g4(xz3yz3y3zxy3x2y2)2(y4z4)12xyz(y1

66,166

62x6

166

(zd2d26

660gx6f(xyzP1

f

166166

) 62626

1616666666

x

d2d26

60g16x f(xyzP216f

1616

1616

) 266266 6 1,2, 6 1,2,与2,1,6

2,

2,1

1两点取条件极小值6 LagrangeL(xy)ax2by22hxy(x2y21Lx2ax2hy2x0Ly2by2hx2y0x2y21x2y21xy不全为0xy的线性方程组的系数矩阵必等于0即aAh

2(ab)abh20 当(ab)24h20,即当ab且h0时,所研究的函数为常数 ,12(ab)24h20时方程(*),12

x1,2x3,4

,y1,2 (1h2(1h2(1h(221(2h2(2(2h(222f(xy)ax2by22hx

hy

by)

1

ax1hy11x1,hx1by11y1f(x,y)x2y2 1 1

f(x2,y2)1f(x3y3f(x4y42f点取四个(xiyi)(i1,2,3,4f(x1,y1)f(x2,y2)1,f(x3,y3)f(x4,y4)2x

,y

ax2by22hxy取最小值1xx3,4,yy3,4f(x,y取最大值21Lagrange1L(x,y,z)x2y2z2[(x2y2z2)2a2x2b2y2c2z212(lxmy令

2x2[2(x2y2z2)xa2x]l01212

2y2[2(x2y2z2)yb2y]

01L122 2z2[2(x2y2z2)zc2z]1L122

0(x2y2z2)2a2x2b2y2c2z2lxmynz0由条件(x2y2z22a2x2b2y2c2z2,得到a2x2b2y2c2a2x2b2y2c2zfx2y2z2ga2x2b2y2c2z2LagrangeL(xyz)a2x2b2y2c2z2(lxmynz

2a2xl02b2ym02c2zn0lxmynz0得唯一稳定点(0,0,0,很显然在点(0,0,0f(0,0,00fxmynzpxyzaa0m0n0p0x0y0z0解LagrangeL(xyz)xmynzp(xyza

mxm1ynzp0nxmyn1zp0pxmynzp10xyza

ynz

m

n

zxy

zkpaxyzk(mnp)k

mn

x mn

mn

mn

P0fxyzaxyaz0

xzay0

yzaxPf0f

mn

,y

mn

,z

mnmmnnppamnff(P0)(mnp)mnpz1(xnynxyl(l0n1)2a0b0n1(a2

an.2解L(xy)1(xnyn(xyl2

2020

xyl2xylfx0y0l,l2较

与边界点(0l),(l,0)f(0,l)

f(l,0)1ln2

(l)22

f(l,

l)(n12

fz(x,y)1(xnyn2

,当xy

n(n2

xn2

(l2

(xylx0y0时下面证明

a2

an2

(a0b0n1时ab0a0b0ab不同时为0abl,,则l0

an2

(l2

(ab)n2解xyz,则体积Vxyzs2(xyxzyz)s(常数L(xyz)xyz[2(xyxzyzsLxyz2(yz)0L xz2(xz)0LL xy2(xy)0L2(xyxzyz)ss6xyz s6解xyzs2(xyxz其体积为V(常数xyzVLagrange

L(x,y,z)2(xyxzyz)(xyzV)Lx2(yz)yz0L 2(xz)xz0LL 2(xy)xy0L3xyz3解r(常数SSr(xyz),满足条件arctanx

arctany

arctanz

2

LagrangeL(xyz)r(xyzx

) Lr r r

x2ry2rz2r

000arctan

rarctanr

,xyzxyz

3r解xyxyax2 yLagrange

A

L(x,y)22

y

(xya),L x0L L L

0x

4

,y

.4

xy4,且其中长是一段围成正方形,短的一段围成圆时,所围正方解设二平面交线上的点为(xyzx2yx2y2zd2dda1xb1yc1zd10,a2xb2yc2zd20下的最小值点与2在相Lagrange函数x2y2zL(x,y,z) 1(a1xb1yc1zd1)2(a2xb2yc2zd2)2令Lxxa11a220Lybb0 1 2

zc11c220axbycz

0 xyz

12xyza2b2c2Aa2b2c2

,a

b

c

B

1 1 1x

B2

x0y(b1d2b2d1)Bb1d1A2b2d2A1x0AAB 1z(c1d2c2d1)Bc1d1A2c2d2A1zAAB 1x2yx2y2z yx2xy1解设抛物线上的点为(xy,直线上的点为(xyyx2,x

(xx)(xx)2(yy xx2y2 L

y1x2

y

x2

1)Lx1L

x1

11011(xx)(xx)2(yy)2 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论