版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45° (1)求证:BD是该外接圆的直径; (2)连结CD,求证:AC=BC+CD; (3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论. 【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°; (2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论; (3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.2.(1)如图1,已知△ABC,以AB,AC为边向△ABC外做等边△ABD和等边△ACE,连接BE,CD,求证:BE=CD;
(2)如图2,已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=60米,AC=AE,求BE的长.
(求BE的长也可以用旋转,然后用相似也简单,这个题符合旋转的条件。)3.在四边形ABCD中,连接对角线AC、BD,AB=BC,DC=6,AD=9,且,则BD=.4.在四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为()ABCDA.B.ABCD5.已知:在△ABC中,∠BAC=60°.如图1,若AB=AC,点P在△ABC内,且∠APC=150°,PA=3,PC=4,把△APC绕着点A顺时针旋转,使点C旋转到点B处,得到△ADB,连接DP①依题意补全图1;②直接写出PB的长;如图2,若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数;如图3,若AB=2AC,点P在△ABC内,且PA=,PB=5,∠APC=120°,请直接写出PC的长.图1图26.如图,在四边形中,,,连接,若,则四边形的面积为
。7.(2017•绥化)在平面直角坐标系中,直线y=﹣3/4x+1交y轴于点B,交x轴于点A,抛物线y=﹣1/2x2+bx+c经过点B,与直线y=﹣3/4x
+1交于点C(4,﹣2).(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.8探究发现:
下面是一道例题及其解答过程,请补充完整:
如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP
2+BP
2=CP
2
证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形
∴∠APP′=60°
PA=PP′PC=______
∵∠APB=150°∴∠BPP′=90°
∴P′P
2+BP
2=______
即PA
2+PB
2=PC
2
(2)类比延伸:
如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.
(3)联想拓展:
如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)
2+PB
2=PC
2,请直接写出k的值.7.已知:在△ABC中,∠BAC=60°.如图1,若AB=AC,点P在△ABC内,且∠APC=150°,PA=3,PC=4,把△APC绕着点A顺时针旋转,使点C旋转到点B处,得到△ADB,连接DP①依题意补全图1;②直接写出PB的长;如图2,若AB=AC,点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都艺术职业大学《商务谈判与礼仪》2023-2024学年第一学期期末试卷
- 2025版家具展览展示合同范本:家具展览展示服务合作协议3篇
- 2024年特许经营合同范例详述
- 2024煤矿安全生产信息化建设技术服务合同3篇
- 2025版个人健身教练服务及器材融资租赁合同3篇
- 计算机辅助设计与计算机辅助制造(CADCAM)技术在牙科正畸中的应用
- 产业园区辐射带动作用的实施路径
- 二零二五年度养老产业股权质押典当借款服务协议书3篇
- 轻钢结构施工方案
- 2024年跨境电子商务平台技术许可合同
- 中医院医院设备科工作总结
- JC/T 414-2017 硅藻土行业标准
- 组织学与胚胎学课程教学大纲
- 网络传播概论(第5版) 课件 第一章 网络媒介的演变
- 2023-2024学年江西省鹰潭市余江区八年级(上)期末数学试卷(含解析)
- 2023北京西城六年级(上)期末英语试卷含答案
- 珠海金湾区2023-2024学年七年级上学期期末数学达标卷(含答案)
- 京东五力模型分析报告
- XX学校2024年校长务虚会讲话稿范文
- 大学英语四级考试模拟试卷(附答案)
- 广西壮族自治区钦州市浦北县2023-2024学年七年级上学期期末历史试题
评论
0/150
提交评论