




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ATLANTICCOUNCIL1
ISSUEBRIEF
MARCH2023
AtlanticCouncil
GLOBALENERGYCENTER
CanHydrogenFuelReduceAviation’sClimateImpact?
BYJOSEPHWEBSTER
INTRODUCTION
A
stheUnitedStateslookstoreduceitsgreenhousegasemissions,loweringitscarbonfootprintwillrequireanall-of-the-abovestrategyacrossmultiplesectors.Decreasingaviation-sectoremissionswillbecriticaltoensuringtheUnitedStatesreachesitsemissionsgoals.Indeed,theaviationsectoraccountsforabout720milliontonsofenergy-relatedcarbonemissions,andworlddemandforjettravelhasincreasednearlycontinuouslyfordecades,withtheimportantexceptionofduringtheCOVID-19pandemic.1Withtheworstofthepandemicseeminglyintherearviewmirror,however,pas-sengerthroughputisrebounding.
Reducingtheaviationsector’sgreenhousegasemissionswillrequireatran-sitiontonewenergyresources.Liquidhydrogenfuel(H2)hasemergedasapromisingalternativetoconventionaljetfuel.Alternativecleanenergyoptionsforaviation,suchasbatteriesandsustainableaviationfuel(SAF),existbuthavelimitations.Severalanalystshaveidentifiedcleanammonia,whichisproducedfromhydrogenandnitrogenviacleanelectricity,asapotentialalternativetoliquidhydrogen.However,thisstudyassumesthatthelatterwillprevailinthefuelcompetition,astheoverwhelmingmajorityoftechnicalaviationexpertsinterviewedbytheauthorbelievethatliquidH2willultimatelybeadoptedbytheindustry.Withfewalternativetechnologiesavailableforsystematicdecar-bonizationoftheaviationsector,itisimperativethatpolicymakerscloselyexaminehydrogen’sroleinaviationdecarbonization.
TheGlobalEnergyCenter
promotesenergysecuritybyworkingalongsidegovernment,industry,civilsociety,andpublicstakeholderstodeviseprag-maticsolutionstothegeopoliti-cal,sustainability,andeconomicchallengesofthechangingglobalenergylandscape.
Severalchallengeswillneedaddressingoverthenexttenyearsormorebeforetheindustrycanbegintoconvertto,orpartiallyswitchto,hydrogen.Engineersmustdesignplanestoaccommodatehydrogen;hydrogen-fuelinfrastructure,althoughgrowingintheUnitedStates,mustexpandfurthertosupporthydrogenjetfuelneedsatscale;andadditionalhydrogenuses,suchaslong-haultrucking,wouldimprovetheeconomiccase.Thisissuebriefwillexaminethesechallenges,andthepolicysolutionsneededforincludingavia-tioninthenascenthydrogeneconomyandenergytransition.
1“Aviation,”InternationalEnergyAgency,September2022,/reports/aviation.
ATLANTICCOUNCIL2
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
CANHYDROGENFUELREDUCEAVIATION’SCLIMATEIMPACT?
1000
800
600
400
200
ISSUEBRIEF
THENEEDFORALTERNATIVEJETFUELS
I
ntheUnitedStates,datafromtheEnvironmentalProtec-tionAgency(EPA)showthatthenumberoftotaltravel-ersin2021rose76percentfrom2020levels,reachingnearly66percentof2019throughputlevels.2
MorerecentTransportationSecurityAdministration(TSA)passengerthroughputdataindicatethat2022passengerthroughputwilltrackatabove90percentof2019levels.3Aspassengersreturntotheskies,aviation-relatedemis-sionswillalsorise.Indeed,aviation-relatedemissionsrosecontinuouslyfrom2013untilthepandemictemporarilygroundedairtraffic.
Figure1:NumberofUSJetPassengers
Millions
1200
DomesticInternational
Source:“Passengers:AllCarriers—AllAirports,”BureauofTransportationStatistics,lastvisitedNovember21,2022,
/Data_Elements.aspx?Data=5
.
2“Passengers:AllCarriers—AllAirports,”BureauofTransportationStatistics,lastvisitedNovember21,2022,
/Data_Elements.aspx?Data=5
.
3“TSACheckpointTravelNumbers(CurrentYearversusPriorYear(s)/SameWeekday),”USTransportationSecurityAdministration,lastupdated
November21,2022,
/coronavirus/passenger-throughput
.
ATLANTICCOUNCIL3
CANHYDROGENFUELREDUCEAVIATION’SCLIMATEIMPACT?
ISSUEBRIEF
Figure2:USAviationEmissions
MilliontonsCO2-e
2007000
150
100
50
0
6800
6600
6400
6200
6000
5800
5600
5400
2011201220132014201520162017201820192020
CommercialAviationMilitaryAircraftGeneralAviationTotalU.S.Emissions(RHS)
Source:EnvironmentalProtectionAgency4
StrongconsumerdemandforairtravelisnotjustaUSstory.TheInternationalAirTransportAssociation(IATA)notesthattotalworldoperatedflightsin2022areexpectedtoreach33.8million,ornearly87percentof2019levels.5TheIATAalsoexpectsthatpassengerrevenueswillincreasefrom$239billionin2021to$498billionin2022,anincreaseofmorethan108percent.6Astheglobalmiddleclassexpands,demandforairtravel—and,therefore,forjetfuel—willalsoincrease.AlthoughbusinesstravelremainslowerduetoCOVID,demandforcommercialflightswilllikelycontinuetorisefortheforeseeablefuture.Aviationdemandandaviation-sectorgreenhousegasemissions(GHG)are,therefore,settorisefrompandemiclevels,necessitatingsustainableapproachesthatcaneconomi-callyreduceemissionsatscale.
CLEANEROPTIONSFOR
POWERINGAIRTRAFFIC
R
esearchersinindustry,government,andacademiaareexploringoptionstoreduceaviation’sclimateimpactthroughalternativetypesoffuelorpowersources.Alternativestoconventionaljetfuelincludebatter-ies,whichproducenoemissionsduringflight;sustainableaviationfuels(SAF),whichhavelowercarbonemissions;andhydrogen,whichemitswaterwhenusedasafuel.
WhilebatteriesandSAFcanbeimplementedrelativelyquickly,theydonotrepresentlong-termsolutions,duetosignificant—potentiallyinsurmountable—hurdlestoscalingupforlong-distancetravelandultimatelymeetingthe
4“InventoryofU.S.GreenhouseGasEmissionsandSinks:1990-2020.”USEnvironmentalProtectionAgency,2022,TableES-2,37,https://www.
/system/files/documents/2022-04/us-ghg-inventory-2022-main-text.pdf.;“FastFactsonTransportationGreenhouseGasEmissions.”USEnvironmentalProtectionAgency,July14,2022,/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions.;“FastFacts:U.S.TransportationSectorGreenhouseGasEmissions,1990-2020”USEnvironmentalProtectionAgency,May2022,/Exe/ZyPDF.cgi?Dockey=P10153PC.pdf.
5“TravelRecoveryRebuildingAirlineProfitability—ResilientIndustryCutsLossesto$9.7Billion,”InternationalAirTransportAssociation,pressrelease,
June20,2022,
/en/pressroom/2022-releases/2022-06-20-02/#:
~:text=Flights%20operated%20in%202022%20are,%24239%20
billion%20generated%20in%202021.
6Ibid.
ATLANTICCOUNCIL4
CANHYDROGENFUELREDUCEAVIATION’SCLIMATEIMPACT?
ISSUEBRIEF
requirementsoftheglobalaviationsector.Batteriesaregenerallyconsideredunsuitableforlong-distanceflightsduetotheirweightrequirements.Indeed,jetfuel’senergydensitystandsat43megajoulesperkilogram(MJ/kg)—versusonly0.72MJ/kgfoundintoday’slithium-ionbatter-ies.7Electrifiedairplaneswould,therefore,needtocarrymassivebatterypacks,especiallyforlong-haulflights,whichwouldlimitthenumberofavailableseatsandharmtheeconomicsofbattery-poweredplanes.Ontheotherhand,SAF,whichreliesonwasteoilsandfatsaswellaswoodybiomass,willlikelyfacesupplyconstraints.Addition-ally,thoughSAFcostsaredeclining,theyareneverthelessaboutthreetofourtimesmoreexpensivethankerosene.8Finally,SAFisnotemissionsfree,asitstillreleasesaboutone-fifthofthecarbonreleasedbykerosenejetfuel.9WhileSAFwillplayaroleinaviationdecarbonization,particularlyintheshortandmediumterms,duetoitsversatilityandeaseofuseasadrop-infuel,policymakerswilllikelyneedtoprioritizeH2jet-fueldevelopmenttoachievemidcenturynet-zerogoals.
Hydrogenisincreasinglyregardedasanenviron-ment-friendlyandcost-effectivefuelsourceforhard-to-de-carbonizesectors,includingaviation.Unlikeburningcoalorotherhydrocarbons,hydrogencombustionoruseinfuelcellsproduceswaterasabyproduct—notcarbonorotherGHG.Althoughmostexistinghydrogenfuelispro-ducedfromhydrocarbons,itcanalsobeproducedviaprocessespoweredbyrenewablesorverylow-emissionsenergysources,includingsolar,wind,naturalgaswithcarbonstorage,andnuclear.HydrogeniswidelyexpectedtobecomeacleanerfuelsourceasrenewablesadoptionincreasesduetotheInflationReductionAct’sclimatepro-visions.
Hydrogendevelopmenthasbeenconstrained,todate,bymultiplefactors,including:economicdisadvantagesrel-ativetootherfuelsources;challengesadaptingequip-mentforH2fuelinnontraditionalapplications,suchassteel,cement,andtrucking;limitedH2infrastructurealong
thesupplychain,beginningingenerationandcontinuingthroughtransmission,enduse,andstorage;thedifficultyofcreatingandhandlingliquidH2,whichmustbefrozento-253degreesCelsius;and,finally,differentstandardsandrules,particularlyacrossinternationallines.
ThereisalsouncertaintyaroundtheGHGimpactofcon-trailsfromwatervapor.OneIATAstudyestimatedthatH2combustionemitsabout2.6timesmorewatervaporthankerosenefuel.10Accordingtoa2021studypublishedinNature,contrailcirrusisthelargestsinglecontributiontoaviationneteffectiveradiativeforcing,greaterthanaircraftcarbon-dioxide(CO2)andnitrogenoxide(NOx)emissions.11Neteffectiveradiativeforcing,ortheconditionthatoccurswhentheamountofenergythatenterstheEarth’satmo-sphereisdifferentfromtheamountofenergythatleavesit,canforcechangestotheEarth’sclimate.12Accordingly,somestudiesbeingundertakenwouldenableairlinestoavoidthecool,humidairthatcanleadtocontrailforma-tion.13Airbushaslaunchedatestprogramtostudythecon-trailsproducedbyahydrogen-combustionengine.14Whilethescientificdebateoncontrailformationremainsunre-solved,itisanimportantareaofresearch,givenitspoten-tialGHGimpact.
Someoftheproblemsaroundhydrogen’seconomiccom-petitivenessarebeingaddressed.AsH2technologycon-tinuestoimprove,marketforceswillcontinuetodrivehydrogenpriceslower,whilegovernmentsaremobilizingresourcestoimproveH2economics(includingthroughtheUSDepartmentofEnergy’sHydrogenShotinitiative,whichseekstoreducethecostofcleanhydrogenby80percent,to$1peronekilograminonedecade—orthe“111”goal).15
UScleanhydrogenalsoreceivedamajorboostfromtheInflationReductionAct(IRA),aUSlawthatwasenactedinAugust2022.Thelegislationprovidessupportfortheentirehydrogenvaluechain,withincentivesextendedtomanufacturingandmining,cleanenergygeneration,andanH2taxcreditofupto$3perkilogram.16Numerousstudies
7JohnathanHolladay,ZiaAbdullah,andJoshuaHeyne,“SustainableAviationFuel:ReviewofTechnicalPathways,”USDepartmentofEnergy,September2020,
/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf
.
8SiddharthVikramPhilipandBenElgin,“AirlinesRushTowardSustainableFuelButSuppliesAreLimited,”Bloomberg,November10,2021,
/news/articles/2021-11-10/airlines-rush-toward-sustainable-fuel-but-supplies-are-limited?sref=lDgLmqjg
.
9PeterWilson,“AirlinersPoweredbySustainableFuelRemainaDistantGoal,”NewYorkTimes,June29,2022,
/2022/06/29/climate/planes-sustainable-fuel-flight.html
.
10“LiquidHydrogenasaPotentialLowcarbonFuelforAviation,”InternationalAirTransportAssociation,August2019,
/contentassets/d13875e9ed784f75bac90f000760e998/fact_sheet7-hydrogen-fact-sheet_072020.pdf
.
11ChristianeVoigt,etal.,“CleanerBurningAviationFuelsCanReduceContrailCloudiness,”CommunicationsEarth&Environment2,1(2021),
/10.1038/s43247-021-00174-y
.
12DavidChandlerandKerryEmanuel,“RadiativeForcing,”MITClimatePortal,September25,2020,/explainers/radiative-forcing#:~:text=Radiative%20forcing%20is%20what%20happens,infrared%20radiation%20exiting%20as%20heat.
13JenniferChu,“NewMapsShowAirplaneContrailsovertheU.S.DroppedSteeplyin2020,”MITNews,March7,2022,
/2022/airplane-contrails-map-0307
.
14“AirbustoTakeuptheHydrogenContrailCharacterisationChallenge,”Airbus,pressrelease,July20,2022,
/en/newsroom/press-releases/2022-07-airbus-to-take-up-the-hydrogen-contrail-characterisation-challenge
.
15“HydrogenShot,”USDepartmentofEnergy,HydrogenandFuelCellTechnologiesOffice,lastvisitedNovember21,2022,
/eere/fuelcells/hydrogen-shot
.
16AndrewC.Hanson,etal.,“TheInflationReductionActandtheRiseofCleanHydrogen,”PerkinsCoie,August26,2022,
/en/news-insights/client-update-the-inflation-reduction-act-and-the-rise-of-clean-hydrogen.html
.
ATLANTICCOUNCIL5
CANHYDROGENFUELREDUCEAVIATION’SCLIMATEIMPACT?
ISSUEBRIEF
suggestthatthelegislationwillsignificantlyimprovehydro-geneconomics,particularlygreenhydrogenproducedfromrenewablesfeedstocks.17
Despitechallengestoshort-andmedium-termadoption,hydrogenoffersuniqueopportunitiesforaviationdecar-bonizationoverthelongterm.Cleanhydrogenproducesfewemissions,whileitsrefuelingcapabilitiesaresimilartoexistingjetfuel:H2iscapableofrapidrefuelingandworkswellincoldclimates.Moreover,thereisalreadyaproofofconcept,asaSovietTupolevTu-155conducteddozensofflightsin1988whileusingliquidH2.18WhileH2-fueledjet-flighttechnologyhasexistedfordecades,theeco-nomicintegrationofliquidH2(LH2)aboardflightsisstillinitsinfancy,andavarietyofcompaniesareexperimentingwithdifferentdesignmodels,includingturbofans,turbo-props,andblended-wingbodies.19Airbusaloneistestingthreedifferenthydrogen-fueledmodels,whilestartupZeroAviacompletedtheworld’sfirsthydrogen-fueledcom-mercial-gradeaircraftflightin2020.20PolicymakersattheFederalAviationAdministration,andperhapstheDepart-mentofEnergy’sLoansProgramOffice,couldhelpacceler-ateH2adoptionbydirectlysupportingtheinitialprototypingandresearch-and-development(R&D)phasesofH2jet-fueldevelopment.
WhiletherearemanyopportunitiesforH2-poweredplanes,thetechnologyalsofacesmanyhurdles.Themostimport-antobstacleisthecostofoverhaulingthefleetandrelatedinfrastructure.Estimatesvarywildlyduetouncertaintyaroundadoption,butthecostsofdesigningnewairframes,buildingtheinfrastructuretogenerateH2,investinginanewfuelecosystem,andmaintaininghydrogen-fueledplaneswillbeimmense.A2020McKinseystudyfortheEuropeanCommissionfoundthataircraftinitialcapitalexpendituresforH2aircraftareexpectedtobehigherthanforconventionalaircraft,duetoLH2tank-structureintegra-tion,increasedaircraftsize,andotherfactors.21ThestudyalsoassessedthatH2planes’largerairframesandonboardstoragetankscouldresultinmoresafetychecksandmain-tenancecosts,particularlyintheshortterm,althoughitalsonotedthatmaintenancecostsforthepropulsionsystemcouldfallovertime.22
Inadditiontofinancialobstacles,thereareseveraltechni-calchallengesthatwillneedtobeovercomethroughR&D.AstudyfromtheInternationalCouncilonCleanTransporta-tionfoundthat,“Comparedtofossil-fuelaircraft,LH2-pow-eredaircraftwillbeheavier,withanincreasedmaximumtakeoffmass(MTOM),andlessefficient,withahigherenergyrequirementperrevenue-passenger-kilometer(MJ/RPK).Theywillalsohaveashorterrangethanfossil-fuelaircraft.”23Similarly,refuelingtimesforH2aircraft,whileshorterthanchargingtimesforbattery-poweredplanes,mayneverthelessbelongerthanforkerosene-fueledair-craft.
BUILDINGHYDROGENAVIATION
INFRASTRUCTURE
T
hereislittletonoexistinghydrogenaviationinfra-structuretospeakof,outsideofhighlyspecializedandnichemarkets,suchastheNationalAeronau-ticsandSpaceAdministration(NASA),oronsiteforkliftsatairports.Hydrogen-capableairportswillrequireaccesstounprecedentedamountsofliquidhydrogen,andwillthere-foreneedtobesitednearhydrogenproductionordedi-catedH2pipelines,justasexistingairportsaccessjetfuelthroughrefined-productpipelines.Forinstance,theHarts-field-JacksonAtlantaInternationalAirportishundredsofmilesfromrefiningcapacity,butliesastridetheColonialcrude-productpipeline.TheUnitedStateshasanexist-ingstockof1,600milesofhydrogen-dedicatedpipelines,mostlyconcentratedintheGulfCoast.24Consequently,hydrogen-capableairportsoutsideoftheGulfCoastwillbeconfrontedwithadilemma:barringapossible(butunlikely)buildoutoflong-haulhydrogen-dedicatedpipelines,air-portsmayneedtorelyontheblendingofhydrogenintoexistingnaturalgaspipelinesthatservicetheairportwith,potentially,somehydrogenseparationperformedattheairportitself.Althoughthereissomedebateoverthecostandpracticalityofthisapproach,moststudiesonthetopicindicatethatatleastafractionofnaturalgaspipelinecapacitycanberepurposedforH2use,atleastonatech-nicalbasis.Alternatively,orasacomplementtoH2frompipelines,airportscanturntolocal,orevenonsite,H2pro-duction.TruckingLH2toairportscouldserveasaninterme-
17JohnLarsen,“ATurningPointforUSClimateProgress:AssessingtheClimateandCleanEnergyProvisionsintheInflationReductionAct,”RhodiumGroup,August18,2022,
/research/climate-clean-energy-inflation-reduction-act/
.
18MarkPiesing,“TheEpicAttemptstoPowerPlaneswithHydrogen,”BBC,March21,2022,/future/article/20220316-the-epic-attempts-to-power-planes-with-hydrogen.
19“Zeroe:TowardstheWorld’sFirstZero-EmissionCommercialAircraft,”Airbus,June24,2021,/en/innovation/zero-emission/
hydrogen/zeroe.
20Ibid.;KelseyReichmann,“ZeroAviaCompletesFirstHydrogen-PoweredFlight,”AviationToday,September29,2020,
/2020/09/29/zeroavia-completes-first-hydrogen-electric-turboprop-flight/
.
21“Hydrogen-PoweredAviation:AFact-BasedStudyofHydrogenTechnology,Economics,andClimateImpactby2050,”McKinsey&Companyand
EuropeanCommission,May2020,https://www.fch.europa.eu/sites/default/files/FCH%20Docs/20200507_Hydrogen%20Powered%20Aviation%20report_FINAL%20web%20%28ID%208706035%29.pdf.
22Ibid.
23JayantMukhopadhayaandDanRutherford,“PerformanceAnalysisofEvolutionaryHydrogen-PoweredAircraft,”InternationalCouncilonCleanTransportation,January2022,
/wp-content/uploads/2022/01/LH2-aircraft-white-paper-A4-v4.pdf
.
24“HydrogenPipelines,”USDepartmentofEnergy,HydrogenandFuelCellTechnologiesOffice,lastvisitedNovember21,2022,
/eere/fuelcells/hydrogen-pipelines
.
ATLANTICCOUNCIL6
CANHYDROGENFUELREDUCEAVIATION’SCLIMATEIMPACT?
ISSUEBRIEF
diatesolution,butthescaleofH2wouldalmostcertainlyrequirealternativesupplies.Astheyweighthecostsandbenefitsofeachsourcingapproach,airportsandairlineswilllikelyseektoensuresupplybyseekinglocal(butnotnecessarilyonsite)H2production.
Inadditiontonearbyproduction,airportsmayalsobenefitfromproximitytootherendusers.Oneobviouscomple-mentaryenduseristhelong-haultruckingindustry.Whilemostindustryexpertsbelievethatelectricvehicleswillbeutilizedforshort-haul,intra-citycommutes,hydrogenmayprovetobethesuperioralternativeforlong-haul,inter-citytrips,duetohydrogen’ssuperiorchargingspeedsandcargocapacity.25Airportsthataresitednearlong-haultruckingnodescould,therefore,benefitfromeconomiesofscale,sharedinfrastructure,anda“hydrogenecosystem”ofknow-howandskilledlabor.LAX,forinstance,issitu-atedclosetotheLosAngelesandLongBeachportsandtheirassociatedlong-haultruckingcomplexes.Airportscanalsohelpcreateotherlocalend-userdemand,suchasbyrequiringground-transportationvehiclesatairportstoswitchtohydrogen.
Still,localgeographyinCaliforniawouldlikelyrequirenewinfrastructure—andpotentiallyevenhydrogen-dedicatedpipelinesthattraveloffshoretoskirtpopulationcenters.Theneedfornew,short-range,hydrogen-dedicatedpipe-lineswillnotbeuniquetoLAX.Duetotheurbancharacter-isticsofalmosteverymajorairport,thelimitationsofexistinghydrogenconnectivity,andsubstantialLH2demandsfromflights,H2-capableairportswilllikelyrequirenewshort-haulpipelinesthatconnecttolocalproduction,otherendusers,orboth.
Inadditiontonewpipelineconnections,airportswilllikelyrequiremassivenewstoragefacilitiestohouseliquidhydrogenonsite.Storagerequirementsatairportscouldbequitesubstantialifhydrogenadoptionaccelerates.Car-negieMellonresearchersfoundthatasingleAirbusZeroEJFK-to-Heathrowflightofabout3,440mileswouldrequiremorethan47,000gallonsofliquidhydrogen(versusabout10,800gallonsofA-1jetfuel).26WhileH2maynotbesuit-ableforverylong-distanceflights(suchasaJFK-to-Heath-rowflight)duetoliquidH2’smassiveonboardvolumerequirements,thefuelmaybeidealformedium-rangeflights.Therefore,ifH2technologyreachesmaturity,majorairportswouldalmostcertainlyexpecttooperateseveral
dozenorevenhundredshort-andmedium-rangeH2flightseveryday.Overtime,H2-capableairportsmay,therefore,requirethecapabilitytosafelystoreandprocesshundredsofthousandsofgallons,orevenmillionsofgallons,ofLH2throughput.Indeed,astudybytheAerospaceTechnol-ogyInstitutefoundthatalargeairportcouldrequireaboutonemilliongallonsofLH2storageby2035and13.2milliongallonsofstorageby2050.27
Thereisnoprecedentforthislevelofliquid-hydrogenstorage,ortheamountofdailythroughputastoragespherewouldneedtoprocess.Toputthesestoragerequire-mentsinperspective,NASAisbuildingtheworld’slargest,1.25-million-gallonliquid-storagespheretosupportspaceoperationsattheKennedySpaceCenter.Thenewstoragespherewillmarkthefirstconstructionofaliquid-hydrogenstoragefacilityinNorthAmericainnearlytwodecades;itwillalsobenearly50percentlargerthanacomparable1966facility.28Finally,NASA’sstoragespheresareusedfordiscretelaunches,whereasairportoperationswouldrequirenear-continuousdischarges.Futurerequirementsforstoringliquidhydrogenforjetfuelwilllikelybeordersofmagnitudelargerandmorecomplexthanthoseseentodate.
Fortunately,theprivatesectorisalreadymakinginitialstridesincreatinglarger,moreefficienthydrogenstoragespheres.McDermott’sCB&I,thecompanythatisconstruct-ingtheNASAstoragesphere,isalsocompletingdesignsforstoragetanksthatareeighttimeslargerthanexistingfacil-ities.29CB&IStorageSolutions—alongwithShellInterna-tionalExplorationandProduction,NASA’sKennedySpaceCenter,GenH2,andtheUniversityofHouston—havebeenawarded$6millionbytheDepartmentofEnergy(DOE)HydrogenandFuelCellTechnologiesOfficetoexplorethefeasibilityofliquid-hydrogenstorageatmassivescale.30BecauseevenlimitedH2flightoperationswillrequiremassivereservesofliquidH2instorage,thetechnicalfea-sibilityandeconomicreliabilityofthesefacilitieswillbeofmajorimportance.
WhiletheDOE’sfundingofafeasibilitystudyforimportandexportLH2terminalswilladvancethebodyofknowledge,therearemajoroperationaldifferencesbetweenamaritimeexport/importH2facilityandanairportru
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国阿胶市场营销建议与可持续发展建议报告
- 2025-2030中国阻燃橡胶地板行业市场现状分析及竞争格局与投资发展研究报告
- 2025-2030中国防爆温度传感器行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国防护面罩行业市场发展分析及前景趋势与投资研究报告
- 2025-2030中国锑靶行业市场现状供需分析及投资评估规划分析研究报告
- 投资咨询工程师风险评估试题及答案
- 2025-2030中国铺管船行业发展趋势与前景分析研究报告版
- 新技术对投资的影响试题与答案
- 深入理解监理工程师备考内容试题及答案
- 2025-2030中国铝合金行业市场现状供需分析及投资评估规划分析研究报告
- 2022年全国大、中城市固体废物污染环境防治年报
- GB∕T 799-2020 地脚螺栓-行业标准
- 高中英语 选必二 Unit3 Times change 第4课时-developing ideas- Emojis a new language 课件
- 机动车检测站突发环境污染事件应急预案
- 经典案例分析单轨吊车培训
- 多发软组织损伤疾患临床路径
- T∕CIS 71001-2021 化工安全仪表系统安全要求规格书编制导则
- 福利院装修改造工程施工组织设计(225页)
- 凝灰岩的简介及应用
- 华师大版九年级下册数学全册教案
- 中国电信SMGP协议V
评论
0/150
提交评论