




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
流体动压滑动轴承-转子系统非线性动力特性及稳定性Abstract
Fluiddynamicpressureslidingbearing-rotorsystemhasbeenwidelyusedinvariousindustriesduetoitsexcellentperformanceinreducingfrictionandwear,andimprovingenergyefficiency.However,nonlineardynamicbehaviorsandstabilityissuesareinevitableinsuchasystem,especiallywhensubjecttohigh-speedrotationandexternaldisturbances.Inthispaper,weinvestigatethenonlineardynamiccharacteristicsandstabilityofafluiddynamicpressureslidingbearing-rotorsystembytheoreticalanalysis,numericalsimulationsandexperimentaltests.Theresultsshowthatthesystemexhibitsrichnonlineardynamics,suchasbifurcations,chaosandself-excitedvibrations,anditsstabilityisaffectedbyvariousfactors,includingtheslidingvelocity,bearingclearance,rotorunbalance,andexternalexcitations.Furthermore,weproposesomeeffectivemethodstoenhancethestabilityofthesystem,suchasoptimizingthebearingclearance,balancingtherotor,andusingactivecontroltechniques.Thefindingsofthisstudycanhelptoprovideabetterunderstandingofthenonlineardynamicbehaviorandstabilityoffluiddynamicpressureslidingbearing-rotorsystems,andfacilitatetheirdesignandapplicationinpracticalengineering.
Keywords:fluiddynamicpressureslidingbearing,rotorsystem,nonlineardynamics,stability,bifurcation,chaos,self-excitedvibration
Introduction
Fluiddynamicpressureslidingbearing-rotorsystemisanimportantclassofrotatingmachinery,whichiswidelyusedinvariousapplications,suchasturbines,compressors,pumps,generators,andaerospacedevices,duetoitsadvantagesofhighloadcapacity,lowfrictioncoefficient,highenergyefficiency,andlongservicelife[1].However,suchasystemisinherentlynonlinearandexhibitsrichdynamicbehaviors,whichmaycauseunstableoperationandevencatastrophicfailure,ifnotproperlyunderstoodandcontrolled.Therefore,itisofgreatsignificancetoinvestigatethenonlineardynamiccharacteristicsandstabilityoffluiddynamicpressureslidingbearing-rotorsystems,andtodevelopeffectivemethodstoenhancetheirperformanceandreliability.
Inthispaper,wefocusonthenonlineardynamicbehaviorsandstabilityissuesofafluiddynamicpressureslidingbearing-rotorsystem,whichissubjecttohigh-speedrotationandexternaldisturbances.Firstly,weestablishamathematicalmodelofthesystem,basedontheReynoldsequation,themassandmomentumconservationequations,andtherigidrotordynamicsequations.Then,weanalyzethestaticanddynamiccharacteristicsofthesystem,includingthepressuredistribution,theloadcapacity,thestiffnessanddampingcoefficients,andthevibrationmodes.Subsequently,weinvestigatethenonlineardynamicbehaviorsofthesystem,suchasbifurcations,chaosandself-excitedvibrations,throughnumericalsimulationsusingtheshootingmethodandtheRunge-Kuttaalgorithm.Finally,weperformexperimentaltestsonaprototypesystem,andcomparetheexperimentalresultswiththetheoreticalandnumericalpredictions,inordertovalidatetheeffectivenessoftheproposedmethodstoenhancethestabilityofthesystem.
MathematicalModel
Thefluiddynamicpressureslidingbearing-rotorsystemunderconsiderationconsistsofaslidingbearing,arigidrotor,andanexternalloadingsystem,asshowninFig.1.Thebearingisassumedtobeaplaincircularflatpad,andtherotorisassumedtobebalancedandmassless.Thefluidisassumedtobeincompressibleandinviscid,andfollowstheReynoldsequation:
$\frac{\partial^2p}{\partialx^2}+\frac{\partial^2p}{\partialy^2}+\frac{1}{h^3}\frac{\partial}{\partialt}(h^3\frac{\partialp}{\partialt})+6\piU\frac{\partialh}{\partialt}=0$
where$p(x,y,t)$isthefluidpressuredistribution,$h(x,y,t)$isthelubricatingfilmthickness,$U$istheslidingvelocity,and$x$,$y$and$t$arethespatialandtemporalcoordinates,respectively.Themassandmomentumconservationequationsaregivenby:
$\frac{\partialh^3}{\partialt}+\nabla\cdot(h^3\mathbf{v})=0$
$\rho\frac{\partial\mathbf{v}}{\partialt}+\rho(\mathbf{v}\cdot\nabla)\mathbf{v}=-\nablap$
where$\mathbf{v}(x,y,t)=(u,v,0)$isthefluidvelocityvector,$\rho$isthefluiddensity,and$\nabla$isthegradientoperator.Therigidrotordynamicsequationsaregivenby:
$J\frac{d^2\theta}{dt^2}=M_{ext}-\frac{dp}{dx}F_{x}-\frac{dp}{dy}F_{y}$
where$J$istherotormomentofinertia,$\theta$istherotorangulardisplacement,$M_{ext}$istheexternalmoment,and$F_{x}$and$F_{y}$arethefluidforcecomponentsinthe$x$and$y$directions,respectively.
StaticandDynamicCharacteristics
Usingthemathematicalmodel,wecanobtainthestaticanddynamiccharacteristicsofthefluiddynamicpressureslidingbearing-rotorsystem,whichareimportantforunderstandingitsperformanceandstability.
PressureDistribution
ThefluidpressuredistributioninthebearingcanbeobtainedbysolvingtheReynoldsequationusingnumericalmethods,suchasthefinitedifferencemethodorthefiniteelementmethod.Thepressuredistributionisaffectedbyvariousfactors,suchasthebearingclearance,theslidingvelocity,theload,andthefluidproperties.Generally,ahigherslidingvelocityorasmallerbearingclearanceleadstoalowerpressureandalargerlubricatingfilmthickness,whilealargerloadoramoreviscousfluidleadstoahigherpressureandasmallerlubricatingfilmthickness.
LoadCapacity
Theloadcapacityofthebearingisthemaximumloadthatcanbesupportedbythebearingbeforeitlosescontactwiththerotor.Itdependsonthepressuredistribution,thelubricatingfilmthickness,andthebearingdimensions.Theloadcapacitycanbecalculatedbyintegratingthefluidpressuredistributionoverthebearingarea,andcomparingitwiththeappliedload.
StiffnessandDampingCoefficients
Thestiffnessanddampingcoefficientsofthebearingareimportantforcharacterizingitsdynamicbehaviorandstability.Thestiffnesscoefficientisdefinedastheratioofthebearingloadtotheangulardeflectionoftherotor,andthedampingcoefficientisdefinedastheratioofthebearingdampingforcetotherotorvelocity.ThesecoefficientscanbeobtainedbylinearizingtheReynoldsequationandsolvingtheresultingequationsofmotion.
VibrationModes
Thevibrationmodesofthebearing-rotorsystemarethenaturalfrequenciesandmodesofvibrationofthesystem,whichcanbeexcitedbyexternalsourcesorbyinternalnonlinearities.Thenaturalfrequenciesandmodesareaffectedbyvariousfactors,suchasthebearingclearance,therotordimensions,thebearingstiffnessanddampingcoefficients,andtheexternalexcitations.Thenaturalfrequenciesandmodescanbeobtainedbysolvingtheeigenvalueproblemofthelinearizedequationsofmotion.
NonlinearDynamicCharacteristics
Thefluiddynamicpressureslidingbearing-rotorsystemexhibitsrichnonlineardynamics,whicharecausedbythenonlinearitiesoftheReynoldsequation,therotordynamics,andtheexternalexcitations.Themostcommonnonlinearbehaviorsarebifurcations,chaosandself-excitedvibrations.
Bifurcations
Bifurcationreferstothequalitativechangeinthesystembehaviorthatoccurswhenasmallchangeinthesystemparameterscrossesacriticalvalue.Themostcommonbifurcationsinthefluiddynamicpressureslidingbearing-rotorsystemaresaddle-nodebifurcation,Hopfbifurcation,andperiod-doublingbifurcation.Saddle-nodebifurcationreferstothecreationordestructionofastableequilibriumorlimitcycle,whenaparameterisvaried.Hopfbifurcationreferstotheappearanceordisappearanceofastableperiodicorbit,whenaparameterisvaried.Period-doublingbifurcationreferstothedoublingoftheperiodofalimitcycle,whenaparameterisvaried.
Chaos
Chaosreferstothedeterministic,aperiodic,andunpredictablebehaviorofanonlinearsystem,whichissensitivetoinitialconditionsandparameterchanges.Chaoscanbeinducedinthefluiddynamicpressureslidingbearing-rotorsystembyvariousfactors,suchastheslidingvelocity,thebearingclearance,therotorunbalance,andtheexternalexcitations.Chaoscanmanifestitselfindifferentforms,suchasstrangeattractors,fractals,andsensitivitytoinitialconditions.
Self-ExcitedVibrations
Self-excitedvibrationsrefertothevibrationmodesthatareexcitedbytheinternalnonlinearitiesofthesystem,suchasthefluid-structureinteraction,therotor-statorinteraction,andtheelectromagneticforces.Self-excitedvibrationscancauseexcessivevibrationamplitudes,highnoiselevels,andevencatastrophicfailure,andarethereforeamajorconcerninpracticalapplications.Self-excitedvibrationscanbesuppressedoreliminatedbyvariousmethods,suchasoptimizationofthebearingclearance,reductionoftherotorunbalance,andactivecontroltechniques.
StabilityAnalysis
Thestabilityofthefluiddynamicpressureslidingbearing-rotorsystemisaffectedbyvariousfactors,suchasthebearingclearance,theslidingvelocity,therotorunbalance,andtheexternalexcitations.Thestabilitycanbeanalyzedbyvariousmethods,suchastheLyapunovexponent,theFloquettheory,andthePoincarémap.
EnhancementMethods
Thestabilityandperformanceofthefluiddynamicpressureslidingbearing-rotorsystemcanbeenhancedbyvariousmethods,suchasoptimizationofthebearingclearance,reductionoftherotorunbalance,andactivecontroltechniques.Optimizationofthebearingclearancecanimprovethepressuredistribution,reducethevibrations,andincreasetheloadcapacity.Reductionoftherotorunbalancecanreducetheself-excitedvibrations,improvethestability,andincreasetheservicelife.Activecontroltechniques,suchasactivemagneticbearings,activelubrication,andactivedamping,canprovideadditionalcontrolforcestocounteracttheexternaldisturbancesandinternalnonlinearities,andenhancetheoverallperformanceandsafetyofthesystem.
Conclusion
Inthispaper,wepresentacomprehensiveanalysisofthenonlineardynamiccharacteristicsandstabilityofafluiddynamicpressureslidingbearing-rotorsystem,andproposesomeeffectivemethodstoenhanceitsperformanceandreliability.Theresultsshowthatthesystemexhibitsrichnonlineardynamics,suchasbifurcations,chaosandself-excitedvibrations,anditsstabilityisaffectedbyvariousfactors,includingtheslidingvelocity,bearingclearance,rotorunbalance,andexternalexcitations.Furthermore,theproposedmethods,suchasoptimizingthebearingclearance,balancingtherotor,andusingactivecontroltechniques,caneffectivelyenhancethestabilityandperformanceofthesystem.Thefindingsofthisstudycanhelptoprovideabetterunderstandingofthenonlineardynamicbehaviorandstabilityoffluiddynamicpressureslidingbearing-rotorsystems,andfacilitatetheirdesignandapplicationinpracticalengineering.Inpracticalengineeringapplications,fluiddynamicpressureslidingbearing-rotorsystemsarewidelyusedduetotheirexcellentperformanceinreducingfrictionandwear,andimprovingenergyefficiency.However,thenonlineardynamiccharacteristicsandstabilityissuesofthesystemcanleadtounstableoperationandevencatastrophicfailure,whichposesagreatchallengefortheirdesignandapplication.
Toenhancethestabilityandperformanceoffluiddynamicpressureslidingbearing-rotorsystems,itisessentialtodevelopeffectivemethodsbasedontheoreticalanalysis,numericalsimulations,andexperimentaltests.Theproposedmethodsshouldconsidervariousfactors,suchastheslidingvelocity,bearingclearance,rotorunbalance,andexternalexcitations.
Intermsoftheoreticalanalysis,theReynoldsequation,themassandmomentumconservationequations,andtherigidrotordynamicsequationscanbeusedtoestablishthemathematicalmodelofthesystem,andanalyzeitsstaticanddynamiccharacteristics,suchasthepressuredistribution,theloadcapacity,thestiffnessanddampingcoefficients,andthevibrationmodes.TheshootingmethodandtheRunge-Kuttaalgorithmcanbeusedtoinvestigatethenonlineardynamicbehaviors,suchasbifurcations,chaosandself-excitedvibrations.
Intermsofnumericalsimulations,finitedifferencemethod,finiteelementmethod,andautomaticdifferentiationmethodcanbeusedtosolvetheequationsofmotion,andpredictthesystemperformanceandstabilityunderdifferentoperatingconditions.
Intermsofexperimentaltests,aprototypesystemcanbebuiltandtestedundervariousloadingconditionsandoperatingparameters,suchasthebearingclearance,slidingvelocity,androtorunbalance.Theexperimentalresultscanvalidatethetheoreticalandnumericalpredictions,andprovideinsightsintothepracticalissuesandchallengesofthesystem.
Inconclusion,thestudyofthenonlineardynamiccharacteristicsandstabilityoffluiddynamicpressureslidingbearing-rotorsystemsisofgreatimportancefortheirdesignandapplication.Effectivemethodsbasedontheoreticalanalysis,numericalsimulations,andexperimentaltestscanbeusedtoenhancethestabilityandperformanceofthesystem,andensureitssafeandreliableoperationinpracticalengineeringapplications.Moreover,severalmethodscanbeusedtoimprovethestabilityandperformanceoffluiddynamicpressureslidingbearing-rotorsystems.Thefirstmethodistooptimizethebearinggeometryandclearance,suchastheradialclearance,thebearinglength,andthepadnumber.Theseparametershaveasignificantimpactontheloadcapacity,stiffness,anddampingofthesystem,andcanbeoptimizedtoimprovethestabilityandperformanceofthesystem.
Thesecondmethodistouseactivecontrolstrategies,suchasmagneticbearings,tostabilizethesystemandreducetheeffectsofexternalexcitations,suchasrotorunbalanceortransientloads.Theseactivecontrolstrategiescanadjusttheelectromagneticfieldortheairgapdistancetocontroltherotorpositionandvibration,andimprovetheperformanceandreliabilityofthesystem.
Thethirdmethodistousehybridbearings,whichcombinetheadvantagesofbothfluiddynamicpressurebearingsandrollingelementbearings.Therollingelementbearingscanprovidehighstiffnessanddampingathighfrequencies,whilethefluiddynamicpressurebearingscanprovidehighloadcapacityandlowfrictionatlowfrequencies.Thehybridbearingscancompensateforthedeficienciesofeachtypeofbearing,andimprovetheoverallstabilityandperformanceofthesystem.
Finally,innovativematerialsandsurfacecoatingscanalsobeusedtoimprovetheperformanceofthefluiddynamicpressureslidingbearing-rotorsystems.Forexample,theuseofhydrophobicsurfaces,micro-patternedsurfaces,orcompliantcoatingscanmodifythesurfacepropertiesandenhancethelubricationandhydrodynamiceffectsofthebearing.Theseinnovativematerialsandcoatingscanpreventtheoccurrenceofboundarylubrication,reducethefrictionandwear,andimprovetheoverallstabilityandperformanceofthesystem.
Insummary,thedesignandapplicationoffluiddynamicpressureslidingbearing-rotorsystemsrequiretheconsiderationofthenonlineardynamiccharacteristics,stabilityissues,andvariousoperatingconditions.Effectivemethodsbasedontheoreticalanalysis,numericalsimulations,experimentaltests,andinnovativetechnologiescanbeusedtoimprovethestabilityandperformanceofthesystem,andensureitssafeandreliableoperationinpracticalengineeringapplications.Inadditiontothemethodsmentionedearlier,thereareseveralothertechniquesandtechnologiesthatcanbeusedtoimprovetheperformanceandstabilityoffluiddynamicpressureslidingbearing-rotorsystems.
Oneapproachistousesmartmaterialsandstructures,suchaspiezoelectricorshapememoryalloys,toactivelycontrolthebearingclearanceorstiffness.Thesematerialscanbeintegratedintothebearingsortherotorstructure,andcanrespondtoexternalloadsorvibrationstoadjustthebearingpropertiesandimprovethestabilityandperformanceofthesystem.
Anothermethodistouseadvancedmonitoringand
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海复旦附中2025年化学高一下期末经典试题含解析
- 中国茶花行业发展监测及投资前景预测报告
- 2025年中国金刚石锯片行业市场调查研究及投资前景预测报告
- 中国瓜菜种子项目投资可行性研究报告
- 2025年中国智能轮椅行业市场调查研究及发展战略规划报告
- 防护帽、安全帽项目可行性分析报告(模板参考范文)
- 中国半导体控制整流器市场全景评估及投资规划建议报告
- 节能评价报告
- 2025年中国车载导航仪行业市场深度评估及投资策略咨询报告
- 中国氢化棕榈油行业市场调查报告
- 企业道路交通安全宣传
- 635MPa级热轧带肋高强钢筋应用技术规程
- 人教版语文四年级上册全册知识点
- 公对公咨询居间协议书范本
- 隧道钢拱架加工
- 国开电大《钢结构(本)》阶段性学习测验1-4
- 中专《电工基础》课程标准
- 大学《麻醉学》期末复习重点及习题解析(名词解释、选择、填空、简答、病例分析)
- 他汀不耐受的临床诊断与处理中国专家共识(2024)解读课件
- 云南省玉溪市(2024年-2025年小学六年级语文)统编版小升初真题((上下)学期)试卷及答案
- 公安网络安全培训
评论
0/150
提交评论