电感式传感器B-差动变压器式传感器课件_第1页
电感式传感器B-差动变压器式传感器课件_第2页
电感式传感器B-差动变压器式传感器课件_第3页
电感式传感器B-差动变压器式传感器课件_第4页
电感式传感器B-差动变压器式传感器课件_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第3章电感式传感器3.1变磁阻式传感器

3.2差动变压器式传感器3.7电涡流式传感器13.2差动变压器式传感器把被测的非电量变化转换为线圈互感变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动形式连接,故称差动变压器式传感器。差动变压器结构形式较多,有变隙式、变面积式和螺线管式等,图3-11为差动变压器的结构示意图。在非电量测量中,应用最多的是螺线管式差动变压器,它可以测量1~100mm机械位移,并具有测量精度高、灵敏度高、结构简单、性能可靠等优点。23.2.1变隙式差动变压器1.工作原理

假设闭磁路变隙式差动变压器的结构如图3-11(a)所示,在A、B两个铁芯上绕有W1a=W1b=W1的两个初级绕组和W2a=W2b=W2两个次级绕组。两个初级绕组的同名端顺向串联,而两个次级绕组的同名端则反相串联。3当没有位移时,衔铁C处于初始平衡位置,它与两个铁芯的间隙有δa0=δb0=δ0,则绕组W1a和W2a间的互感Ma与绕组W1b和W2b的互感Mb相等,致使两个次级绕组的互感电势相等,即e2a=e2b。由于次级绕组反相串联,因此,差动变压器输出电压Uo=e2a-e2b=0。当被测体有位移时,与被测体相连的衔铁的位置将发生相应的变化,使δa≠δb,互感Ma≠Mb,两次级绕组的互感电势e2a≠e2b,输出电压Uo=e2a-e2b≠0,即差动变压器有电压输出,此电压的大小与极性反映被测体位移的大小和方向。..52.输出特性

图3-12变隙式差动变压器等效电路6如果被测体带动衔铁移动图3-13变隙式差动变压器输出特性

1理想特性;2实际特性7③以上分析的结果是在忽略铁损和线圈中的分布电容等条件下得到的,如果考虑这些影响,将会使传感器性能变差(灵敏度降低,非线性加大等)。但是,在一般工程应用中是可以忽略的。④以上结果是在假定工艺上严格对称的前提下得到的,而实际上很难做到这一点,因此传感器实际输出特性如图3-13中曲线2所示,存在零点残余电压ΔUo。⑤进行上述推导的另一个条件是变压器副边开路,对由电子线路构成的测量电路来讲,这个要求很容易满足,但如果直接配接低输入阻抗电路,就必须考虑变压器副边电流对输出特性的影响。91-活动衔铁;2-导磁外壳;3-骨架;4-匝数为W1初级绕组;5-匝数为W2a的次级绕组;6-匝数为W2b的次级绕组3.2.2螺线管式差动变压器1.工作原理10螺线管式差动变压器按线圈绕组排列方式不同可分为一节、二节、三节、四节和五节式等类型,如图3-15所示。一节式灵敏度高,三节式零点残余电压较小,通常采用的是二节式和三节式两类。图3-15线圈排列方式(a)一节式;(b)二节式;(c)三节式;(d)四节式;(e)五节式11在零点总是有一个最小的输出电压。一般把这个最小的输出电压称为零点残余电压。零点残余电压的大小是判别传感器质量的重要表示之一。当活动衔铁向上移动时,由于磁阻的影响,W2a中磁通将大于W2b,使M1>M2,因而E2a增加,而E2b减小。反之,E2b增加,E2a减小。因为Uo=E2a-E2b,所以当E2a、E2b随着衔铁位移x变化时,Uo也必将随x而变化。图3-17给出了差动变压器输出电压Uo与活动衔铁位移Δx的关系曲线。图中实线为理论特性曲线,虚线曲线为实际特性曲线。由图3-17可以看出,当衔铁位于中心位置时,差动变压器输出电压并不等于零,我们把差动变压器在零位移时的输出电压称为零点残余电压,记作ΔUo,它的存在使传感器的输出特性不经过零点,造成实际特性与理论特性不完全一致。.........

..零点残余电压:13零点残余电压产生原因:①基波分量。由于差动变压器两个次级绕组不可能完全一致,因此它的等效电路参数(互感M、自感L及损耗电阻R)不可能相同,从而使两个次级绕组的感应电势数值不等。又因初级线圈中铜损电阻及导磁材料的铁损和材质的不均匀,线圈匝间电容的存在等因素,使激励电流与所产生的磁通相位不同。

②高次谐波。高次谐波分量主要由导磁材料磁化曲线的非线性引起。由于磁滞损耗和铁磁饱和的影响,使得激励电流与磁通波形不一致产生了非正弦(主要是三次谐波)磁通,从而在次级绕组感应出非正弦电势。另外,激励电流波形失真,因其内含高次谐波分量,这样也将导致零点残余电压中有高次谐波成分。

14消除零点残余电压方法:1.从设计和工艺上保证结构对称性为保证线圈和磁路的对称性,首先,要求提高加工精度,线圈选配成对,采用磁路可调节结构。其次,应选高磁导率、低矫顽力、低剩磁感应的导磁材料。并应经过热处理,消除残余应力,以提高磁性能的均匀性和稳定性。由高次谐波产生的因素可知,磁路工作点应选在磁化曲线的线性段。2.选用合适的测量线路

采用相敏检波电路不仅可鉴别衔铁移动方向,而且把衔铁在中间位置时,因高次谐波引起的零点残余电压消除掉。如图,采用相敏检波后衔铁反行程时的特性曲线由1变到2,从而消除了零点残余电压。e2+x-x210相敏检波后的输出特性15②并联电位器W用于电气调零,改变两次级线圈输出电压的相位,如图所示。电容C(0.02μF)可防止调整电位器时使零点移动。~e1e2CR1R2W电位器调零点残余电压补偿电路173.差动变压器式传感器测量电路

差动变压器的输出是交流电压,若用交流电压表测量,只能反映衔铁位移的大小,不能反映移动的方向。另外,其测量值中将包含零点残余电压。为了达到能辨别移动方向和消除零点残余电压的目的,实际测量时,常常采用差动整流电路和相敏检波电路。(1)差动整流电路根据半导体二级管单向导通原理进行解调的。如传感器的一个次级线圈的输出瞬时电压极性,在f点为“+”,e点为“–”,则电流路径是fgdche(参看图a)。反之,如f点为“–”,e点为“+”,则电流路径是ehdcgf。可见,无论次级线圈的输出瞬时电压极性如何,通过电阻R的电流总是从d到c。同理可分析另一个次级线圈的输出情况。输出的电压波形见图(b),其值为USC=eab+ecd。18全波整流电路和波形图~e1RRcabhgfdeUSC衔铁在零位以下eabttteabttteabtecdtUSCtecdUSCUSCecd衔铁在零位以上衔铁在零位(b)(a)在f点为“+”,则电流路径是fgdche(参看图a)。反之,如f点为“–”,则电流路径是ehdcgf。19

4.差动变压器式传感器的应用测量振动、厚度、应变、压力、加速度等各种物理量。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论