版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.2.已知为的一个内角,向量.若,则角()A. B. C. D.3.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.4.在正方体中,直线与直线所成角是()A. B. C. D.5.若,则三个数的大小关系是()A. B.C. D.6.设a,b,c均为不等于1的正实数,则下列等式中恒成立的是A.B.C.D.7.在锐角中,角的对边分别为.若,则角的大小为()A. B.或 C. D.或8.函数的图象大致为()A. B. C. D.9.若函数()有两个不同的零点,则实数m的取值范围是()A. B. C. D.10.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推,记此数列为,则()A.1 B.2 C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.将正偶数按下表排列成列,每行有个偶数的蛇形数列(规律如表中所示),则数字所在的行数与列数分别是_______________.第列第列第列第列第列第行第行第行第行……12.函数的最大值是__________.13.关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x﹣);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是.14.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______15.记Sn为等比数列{an}的前n项和.若,则S5=____________.16.已知是第二象限角,且,且______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比数列{bn}的前三项.(1)求数列{an}和{bn}的通项公式;(2)设cn=an·bn,求数列{cn}的前n项和Sn.18.已知四棱锥的底面是菱形,底面,是上的任意一点求证:平面平面设,求点到平面的距离在的条件下,若,求与平面所成角的正切值19.设数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和.20.已知数列满足:,,数列满足:().(1)证明:数列是等比数列;(2)求数列的前项和,并比较与的大小.21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.2、C【解析】
带入计算即可.【详解】即,选C.【点睛】本题考查向量向量垂直的坐标运算,属于基础题.3、B【解析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,
∴故选B4、B【解析】
直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.5、A【解析】
根据对数函数以及指数函数的性质比较,b,c的大小即可.【详解】=log50.2<0,b=20.5>1,0<c=0.52<1,则,故选A.【点睛】本题考查了对数函数以及指数函数的性质,是一道基础题.6、B【解析】
根据对数运算的规律一一进行运算可得答案.【详解】解:由a,b,c≠1.考察对数2个公式:,,对选项A:,显然与第二个公式不符,所以为假.对选项B:,显然与第二个公式一致,所以为真.对选项C:,显然与第一个公式不符,所以为假.对选项D:,同样与第一个公式不符,所以为假.所以选B.【点睛】本题主要考查对数运算的性质,熟练掌握对数运算的各公式是解题的关键.7、A【解析】
利用正弦定理,边化角化简即可得出答案.【详解】由及正弦定理得,又,所以,所以,又,所以.故选A【点睛】本题考查正弦定理解三角形,属于基础题.8、C【解析】
利用函数的性质逐个排除即可求解.【详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【点睛】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.9、A【解析】
函数()有两个不同的零点等价于函数在均有一个解,再解不等式即可.【详解】解:因为,由函数()有两个不同的零点,则函数在均有一个解,则,解得:,故选:A.【点睛】本题考查了分段函数的零点问题,重点考查了分式不等式的解法,属中等题.10、C【解析】
将数列分组:第1组为,第2组为,第3组为,,根据,进而得到数列的2017项为,数列的第2018项为,数列的第2019项为,即可求解.【详解】将所给的数列分组:第1组为,第2组为,第3组为,,则数列的前n组共有项,又由,所以数列的前63组共有2016项,所以数列的2017项为,数列的第2018项为,数列的第2019项为,所以故选:C.【点睛】本题主要考查了等差数列的前n项和公式的应用,其中解答中根据所给数列合理分组,结合等差数列的前n项和求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、行列【解析】
设位于第行第列,观察表格中数据的规律,可得出,由此可求出的值,再观察奇数行和偶数行最小数的排列,可得出的值,由此可得出结果.【详解】设位于第行第列,由表格中的数据可知,第行最大的数为,则,解得,由于第行最大的数为,所以,是表格中第行最小的数,由表格中的规律可知,奇数行最小的数放在第列,那么.因此,位于表格中第行第列.故答案为:行列.【点睛】本题考查归纳推理,解题的关键就是要结合表格中数据所呈现的规律来进行推理,考查推理能力,属于中等题.12、【解析】分析:利用两角和正弦公式简化为y=,从而得到函数的最大值.详解:y=sinx+cosx==.∴函数的最大值是故答案为点睛:本题考查了两角和正弦公式,考查了正弦函数的图象与性质,属于基础题.13、①③【解析】
∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正确;∵T=,故②不正确;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的图象关于点对称,③正确④不正确;故答案为①③.14、【解析】
把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【点睛】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.15、.【解析】
本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】设等比数列的公比为,由已知,所以又,所以所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.16、【解析】
利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解析】
(1)由a1,a2,a5是等比数列{bn}的前三项得,a22=a1·a5⇒(a1+d)2=a1·(a1+4d)··⇒a12+2a1d+d2=a12+4a1d⇒d2=2a1d,又d≠0,所以d=2a1=2,从而an=a1+(n-1)d=2n-1,则b1=a1=1,b2=a2=3,则等比数列{bn}的公比q=3,从而bn=3n-1(2)由(1)得,cn=an·bn=(2n-1)·3n-1,则Sn=1·1+3·3+5·32+7·33+…+(2n-1)·3n-1①3Sn=1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n②①-②得,-2Sn=1·1+2·3+2·32+2·33+…+2·3n-1-(2n-1)·3n=1+2×-(2n-1)·3n=-2(n-1)·3n-2··则Sn=(n-1)·3n+1.18、(1)见解析(2)(3)【解析】
(1)由平面,得出,由菱形的性质得出,利用直线与平面垂直的判定定理得出平面,再利用平面与平面垂直的判定定理可证出结论;(2)先计算出三棱锥的体积,并计算出的面积,利用等体积法计算出三棱锥的高,即为点到平面的距离;(3)由(1)平面,于此得知为直线与平面所成的角,由,得出平面,于此计算出,然后在中计算出即可.【详解】(1)平面,平面,,四边形是菱形,,平面;又平面,所以平面平面.(2)设,连结,则,四边形是菱形,,,,设点到平面的距离为平面,,,解得,即点到平面的距离为;(3)由(1)得平面,为与平面所成角,平面,,与平面所成角的正切值为.【点睛】本题考查平面与平面垂直的证明、点到平面的距离以及直线与平面所成的角,求解点到平面的距离,常用的方法是等体积法,将问题转化为三棱锥的高来计算,考查空间想象能力与推理能力,属于中等题.19、【解析】试题分析:(1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1)由已知,当时,==,.而,所以数列的通项公式为.(2)由知…①……7分从而……②①②得,即.考点:1.累和法求数列通项公式;2.错位相减法求和20、(1)见证明;(2)见解析【解析】
(1)将原式变形为,进而得到结果;(2)根据第一问得到,错位相减得到结果.【详解】(1)由条件得,易知,两边同除以得,又,故数列是等比数列,其公比为.(2)由(1)知,则……①……②两式相减得即.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.21、(1)(2)该高三学生的记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年TFT系列偏光片合作协议书
- 广西壮族自治区桂林市第十八中2024年高三第二次适应性考试数学试题
- 2024年耐高温合成云母层压板项目发展计划
- 盐城师范学院《新能源热利用与热发电原理及系统》2023-2024学年期末试卷
- 2024公司授权委托书合同
- 浙教版五年级上册数学第一单元 小数的意义与加减法 测试卷及完整答案(必刷)
- 2024年塑料挤吹中空成型机项目合作计划书
- 2024年内螺纹球阀项目发展计划
- 2024房产赠与合同范本写
- 车辆检修工必知必会练习试题及答案(一)
- 《万维网安全新协议》课件 2024-2025学年人教版新教材初中信息技术七年级全一册
- 全国职业院校技能大赛高职组(商务数据分析赛项)备赛试题及答案
- 部编版道德与法治二年级上册第8课《装扮我们的教室》精美课件
- 2024年新高考Ⅱ卷高考英语真题(答案版)
- 部编版历史高一上学期期中试卷与参考答案(2024-2025学年)
- 数据备份与恢复应急预案
- 情感表达 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 印刷包装岗位招聘笔试题与参考答案(某大型国企)
- 2024届湖北省武汉市高三下学期4月调研(二模)英语 试题
- 变电站新建工程三通一平场地平整施工方案
- 结婚函调报告表
评论
0/150
提交评论