版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象如图所示,则y的表达式为()A. B.C. D.2.设是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数有()A.1 B.2 C.3 D.43..若且,直线不通过()A.第一象限 B.第二象限 C.第三象限 D.第四象限,4.已知,,则点在直线上的概率为()A. B. C. D.5.设是周期为4的奇函数,当时,,则()A. B. C. D.6.在中,,BC边上的高等于,则()A. B. C. D.7.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.8.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.9.在1和19之间插入个数,使这个数成等差数列,若这个数中第一个为,第个为,当取最小值时,的值是()A.4 B.5 C.6 D.710.下列角中终边与相同的角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,该函数零点的个数为_____________12.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.13.已知数列的通项公式,,前项和达到最大值时,的值为______.14.已知数列是等比数列,公比为,且,,则_________.15.等差数列前9项的和等于前4项的和.若,则.16.已知,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组80.16第2组▆第3组200.40第4组▆0.08第5组2合计▆▆(1)求的值;(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.18.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值19.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.20.如果数列对任意的满足:,则称数列为“数列”.(1)已知数列是“数列”,设,求证:数列是递增数列,并指出与的大小关系(不需要证明);(2)已知数列是首项为,公差为的等差数列,是其前项的和,若数列是“数列”,求的取值范围;(3)已知数列是各项均为正数的“数列”,对于取相同的正整数时,比较和的大小,并说明理由.21.设向量,,令函数,若函数的部分图象如图所示,且点的坐标为.(1)求点的坐标;(2)求函数的单调增区间及对称轴方程;(3)若把方程的正实根从小到大依次排列为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.2、C【解析】对于①:可以在两个互相垂直的平面中,分别画一条直线,当这两条直线异面时,可判断①正确对于②:可在两个平行平面中,分别画一条直线,当这两条直线异面时,可判断②正确对于③:当这两条直线不是异面垂直时,不存在这样的平面满足题意,可判断③错误对于④:假设过直线a有两个平面α、β与直线b平行,则面α、β相交于直线a,过直线b做一平面γ与面α、β相交于两条直线m、n,则直线m、n相交于一点,且都与直线b平行,这与“过直线外一点有且只有一条直线与已知直线平行”矛盾,所以假设不成立,所以④正确故选:C.3、D【解析】
因为且,所以,,又直线可化为,斜率为,在轴截距为,因此直线过一二三象限,不过第四象限.故选:D.4、B【解析】
先求出点)的个数,然后求出点在直线上的个数,最后根据古典概型求出概率.【详解】点的个数为,其中点三点在直线上,所以点在直线上的概率为,故本题选B.【点睛】本题考查了古典概型概率的计算公式,考查了数学运算能力.5、A【解析】
.故选A.6、C【解析】试题分析:设,故选C.考点:解三角形.7、A【解析】
直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.8、C【解析】
利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.9、B【解析】
设等差数列公差为,可得,再利用基本不等式求最值,从而求出答案.【详解】设等差数列公差为,则,从而,此时,故,所以,即,当且仅当,即时取“=”,又,解得,所以,所以,故选:B.【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.10、B【解析】与30°的角终边相同的角α的集合为{α|α=330°+k•360°,k∈Z}当k=-1时,α=-30°,故选B二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【点睛】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.12、.【解析】
由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【点睛】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.13、或【解析】
令,求出的取值范围,即可得出达到最大值时对应的值.【详解】令,解得,因此,当或时,前项和达到最大值.故答案为:或.【点睛】本题考查等差数列前项和最值的求解,可以利用关于的二次函数,由二次函数的基本性质求得,也可以利用等差数列所有非正项或非负项相加即得,考查计算能力,属于基础题.14、.【解析】
先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.15、10【解析】
根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.16、【解析】
利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.【详解】由题意,向量,则,,所以.故答案为【点睛】本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据频率分布表可得b.先求得内的频数,即可由总数减去其余部分求得.结合频率分布直方图,即可求得的值.(2)根据频率分布表可知在内有4人,在有2人.列举出从这6人中选取2人的所有可能,由古典概型概率计算公式即可求解.【详解】(1)由频率分布表可得内的频数为,∴∴内的频率为∴∵内的频率为0.04∴(2)由题意可知,第4组共有4人,第5组共有2人,设第4组的4人分别为、、、;第5组的2人分别为、从中任取2人的所有基本事件为:,,,,,,,,,,,,,,共15个.至少一人来自第5组的基本事件有:,,,,,,,共9个.所以.∴所抽取2人中至少一人来自第5组的概率为.【点睛】本题考查了频率分布表及频率分布直方图的应用,列举法表示事件的可能,古典概型概率计算方法,属于基础题.18、(1),,.(2).【解析】
(1)根据诱导公式,二倍角公式,辅助角公式把化为的形式,再根据复合函数单调性求解;(2)先根据变换关系得到函数解析式,所得函数的图象关于轴对称,则时,.【详解】(1)当即时,函数单调递减,所以函数的单调递减区间为.(2)将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数为,若图象关于轴对称,则,即,解得,又,则当时,有最小值.【点睛】本题主要考查三角函数的性质和图像的变换.关键在于化为的形式,三角函数的平移变换是易错点.19、(1),(2),最大值为;,最小值为0【解析】
(1)用已知的向量表示出,再进行化简整理,可得;(2)由正弦函数的值域可得。【详解】(1)由题得,,化简整理得,因此的最小正周期为,由得,则单调增区间为.(2)若,则,当,即时,取最大值,当,即时,取最小值0.综上,当时,取最大值,当时,取最小值0.【点睛】本题考查向量的运算和函数的周期,单调区间以及最值,知识点考查全面,难度不大。20、(1);(2)(3),证明见解析.【解析】
(1)由新定义,结合单调性的定义可得数列是递增数列;再根据,,可得;(2)运用新定义和等差数列的求和公式,解绝对值不等式即可得到所求范围;(3)对一切,有.运用数学归纳法证明,注意验证成立;假设不等式成立,注意变形和运用新定义,即可得证.【详解】(1)证明:数列是“数列”,可得,即,即,可得数列是递增数列,.(2)数列是“数列”,可得,即,可得,即有,或,或,即或或,所以.(3)数列是各项均为正数的“数列”,对于取相同的正整数时,,运用数学归纳法证明:当时,,,显然即.设时,.即,可得,当时,即证,即证,由,即证即证,由,,,,相加可得,则对一切,有.【点睛】本题考查新定义的理解和运用,考查数列的单调性的证明和等差数列的通项公式和求和公式,以及数学归纳法的应用,考查化简整理的运算能力,属于难题.21、(1)(2)单调递增区间为;对称轴方程为,;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025担保合同的效力怎样确定
- 注浆补漏施工合同6篇
- 课题申报参考:跨学科主题教学活动的设计与实践研究
- 构建可持续发展的实验技术与设备共享体系
- 嵌入式系统在环境监测中的应用
- 2024年户外广告行业项目投资申请报告代可行性研究报告
- 二零二五年度房屋租赁合同解除条件补充协议3篇
- 二零二五年度床垫生产技术改造与升级合同3篇
- 临时人员租赁合同
- 2025年浙科版选择性必修3化学下册月考试卷
- 中国末端执行器(灵巧手)行业市场发展态势及前景战略研判报告
- 北京离婚协议书(2篇)(2篇)
- 2025中国联通北京市分公司春季校园招聘高频重点提升(共500题)附带答案详解
- Samsung三星SMARTCAMERANX2000(20-50mm)中文说明书200
- 2024年药品质量信息管理制度(2篇)
- 2024年安徽省高考地理试卷真题(含答案逐题解析)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 高中学校开学典礼方案
- 内审检查表完整版本
- 3级人工智能训练师(高级)国家职业技能鉴定考试题及答案
- 孤残儿童护理员技能鉴定考试题库(含答案)
评论
0/150
提交评论