版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,则命题正确的()A.是周期为1的奇函数 B.是周期为2的偶函数C.是周期为1的非奇非偶函数 D.是周期为2的非奇非偶函数2.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.1103.若函数和在区间D上都是增函数,则区间D可以是()A. B. C. D.4.过点且与圆相切的直线方程为()A. B.或C.或 D.或5.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.96.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是,则下列叙述正确的是()A.,乙比甲成绩稳定B.,甲比乙成绩稳定C.,乙比甲成绩稳定D.,甲比乙成绩稳定7.已知向量,且,则的值为()A.1 B.3 C.1或3 D.48.等比数列的各项均为正数,且,则()A. B. C. D.9.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C10.已知a,,若关于x的不等式的解集为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在△中,三个内角、、的对边分别为、、,若,,,则________12.过抛物线的焦点F的直线交抛物线于A、B两点,则________.13.将一个圆锥截成圆台,已知截得的圆台的上、下底面面积之比是1:4,截去的小圆锥母线长为2,则截得的圆台的母线长为________.14.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.15.已知,,则当最大时,________.16.设,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量与向量垂直,求;(2)若与夹角为锐角,求的取值范围.18.在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.19.如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,(1)按下列要求写出函数的关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式,(2)请你选用(1)中的一个函数关系式,求出的最大值.20.已知数列的前项和为,.(1)求数列的通项公式(2)数列的前项和为,若存在,使得成立,求范围?21.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题得函数的周期为T==2,又f(x)=sin(πx−)−1=−cosπx−1,从而得出函数f(x)为偶函数.故本题正确答案为B.2、A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.3、D【解析】
依次判断每个选项,排除错误选项得到答案.【详解】时,单调递减,A错误时,单调递减,B错误时,单调递减,C错误时,函数和都是增函数,D正确故答案选D【点睛】本题考查了三角函数的单调性,意在考查学生对于三角函数性质的理解应用,也可以通过图像得到答案.4、C【解析】
分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.5、C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.6、C【解析】甲的平均成绩,甲的成绩的方差;乙的平均成绩,乙的成绩的方差.∴,乙比甲成绩稳定.故选C.7、B【解析】
先求出,再利用向量垂直的坐标表示得到关于的方程,从而求出.【详解】因为,所以,因为,则,解得所以答案选B.【点睛】本题主要考查了平面向量的坐标运算,以及向量垂直的坐标表示,属于基础题.8、D【解析】
本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.9、B【解析】
由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题BA,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选:B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题10、D【解析】
由不等式的解集为R,得的图象要开口向上,且判别式,即可得到本题答案.【详解】由不等式的解集为R,得函数的图象要满足开口向上,且与x轴至多有一个交点,即判别式.故选:D【点睛】本题主要考查一元二次不等式恒成立问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用正弦定理求解角,再利用面积公式求解即可.【详解】由,因为,故,.故.故答案为:【点睛】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.12、【解析】
讨论斜率不存在和斜率存在两种情况,分别计算得到答案.【详解】抛物线的焦点F为,当斜率不存在时,易知,故;当斜率存在时,设,故,即,故,.综上所述:.故答案为:.【点睛】本题考查了抛物线中线段长度问题,意在考查学生的计算能力和转化能力.13、2【解析】
由截得圆台上,下底面积之比可得上,下底面半径之比,再根据小圆锥的母线即可得圆台母线.【详解】设截得的圆台的母线长为.因为截得的圆台的上、下底面面积之比是1:4,所以截得的圆台的上、下底面半径之比是1:2.因为截去的小圆锥母线长为2,所以,解得.【点睛】本题考查求圆台的母线,属于基础题.14、【解析】
利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【点睛】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.15、【解析】
根据正切的和角公式,将用的函数表示出来,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【详解】故可得则当且仅当,即时,此时有故答案为:.【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.16、【解析】
由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)10或2;(2).【解析】
(1)由向量与向量垂直,求得或,进而求得的坐标,利用模的计算公式,即可求解;(2)因为与夹角为锐角,所以,且与不共线,列出不等关系式,即可求解.【详解】(1)由题意,平面向量,,由向量与向量垂直,则,解得或,当时,,则,所;当时,,则,所,(2)因为与夹角为锐角,所以,且与不共线,即且,解得,且,即的取值范围为.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直条件,以及向量的数量积的应用,着重考查了推理运算能力,属于基础题.18、(1);(2).【解析】分析:(1)因为曲线与坐标轴的交点都在圆上,所以要求圆的方程应求曲线与坐标轴的三个交点.曲线与轴的交点为,与轴的交点为.由与轴的交点为关于点(3,0)对称,故可设圆的圆心为,由两点间距离公式可得,解得.进而可求得圆的半径为,然后可求圆的方程为.(2)设,,由可得,进而可得,减少变量个数.因为,,所以.要求值,故将直线与圆的方程联立可得,消去,得方程.因为直线与圆有两个交点,故判别式,由根与系数的关系可得,.代入,化简可求得,满足,故.详解:(1)曲线与轴的交点为,与轴的交点为.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组消去,得方程.由已知可得,判别式,且,.由于,可得.又,所以.由得,满足,故.点睛:⑴求圆的方程一般有两种方法:①待定系数法:如条件和圆心或半径有关,可设圆的方程为标准方程,再代入条件可求方程;如已知圆过两点或三点,可设圆的方程为一般方程,再根据条件求方程;②几何方法:利用圆的性质,如圆的弦的垂直平分线经过圆心,最长的弦为直径,圆心到切线的距离等于半径.(2)直线与圆或圆锥曲线交于,两点,若,应设,,可得.可将直线与圆或圆锥曲线的方程联立消去,得关于的一元二次方程,利用根与系数的关系得两根和与两根积,代入,化简求值.19、(Ⅰ),;(Ⅱ).【解析】试题分析:(1)①通过求出矩形的边长,求出面积的表达式;②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值.试题解析:(1)①因为,所以,所以,.②当时,,则,又,所以,所以,().(2)由②得,,当时,取得最大值为.考点:1.三角函数中的恒等变换;2.两角和与差的正弦函数.【方法点睛】本题主要考查的是函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运用,计算能力,属于中档题,此题是课本题目的延伸,如果(2)选择(1)①中的解析式,需要用到导数求解,麻烦,不是命题者的本意,因此正确的选择是选择(1)②中的解析式,化成一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值,此类题目选择正确的解析式是求解容易与否的关键.20、(1);(2)【解析】
(1)根据之间关系,可得结果(2)利用错位相减法,可得,然后使用分离参数的方法,根据单调性,计算其范围,可得结果.【详解】(1)当时,两式相减得:当时,,不符合上式所以(2)令,所以所以令①②所以①-②:则化简可得故,若存在,使得成立即存在,成立故,由,则所以可知数列在单调递增所以,故【点睛】本题考查了之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国全自动五分类血球分析仪数据监测研究报告
- 2025年中国网球运动员雕塑市场调查研究报告
- 2025年中国充电式电钻市场调查研究报告
- WO3-x基全薄膜电-光致变色器件的制备与性能研究
- 2025年度美容院美容院美容院产品研发与市场调研合同4篇
- 二零二五年度旅游产业并购融资策划与执行合同3篇
- 二零二五版美团骑手职业风险防控与责任承担合同3篇
- 2025年度电商企业产品溯源体系供货合同书4篇
- 2025年度水库鱼塘渔业养殖与市场拓展承包合同3篇
- 二零二五年度农家乐休闲垂钓中心设计与运营合同4篇
- 中国末端执行器(灵巧手)行业市场发展态势及前景战略研判报告
- 北京离婚协议书(2篇)(2篇)
- 2025中国联通北京市分公司春季校园招聘高频重点提升(共500题)附带答案详解
- 康复医学科患者隐私保护制度
- Samsung三星SMARTCAMERANX2000(20-50mm)中文说明书200
- 2024年药品质量信息管理制度(2篇)
- 2024年安徽省高考地理试卷真题(含答案逐题解析)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 高中学校开学典礼方案
- 内审检查表完整版本
- 3级人工智能训练师(高级)国家职业技能鉴定考试题及答案
评论
0/150
提交评论