安徽定远育才实验学校2023年数学高一第二学期期末教学质量检测模拟试题含解析_第1页
安徽定远育才实验学校2023年数学高一第二学期期末教学质量检测模拟试题含解析_第2页
安徽定远育才实验学校2023年数学高一第二学期期末教学质量检测模拟试题含解析_第3页
安徽定远育才实验学校2023年数学高一第二学期期末教学质量检测模拟试题含解析_第4页
安徽定远育才实验学校2023年数学高一第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.2.在中,若,那么是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定3.已知,,则()A. B. C. D.4.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=05.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.6.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°7.当为第二象限角时,的值是().A. B. C. D.8.某校高二理(1)班学习兴趣小组为了调查学生喜欢数学课的人数比例,设计了如下调查方法:(1)在本校中随机抽取100名学生,并编号1,2,3,…,100;(2)在箱内放置了两个黄球和三个红球,让抽取到的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生站出来,一是摸到黄球且编号数为奇数的学生,二是摸到红球且不喜欢数学课的学生。若共有32名学生站出来,那么请用统计的知识估计该校学生中喜欢数学课的人数比例大约是()A.80% B.85% C.90% D.92%9.直线的倾斜角是()A.30° B.60° C.120° D.135°10.已知,函数的最小值是()A.5 B.4 C.8 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解为_______.12.已知函数,对于上的任意,,有如下条件:①;②;③;④.其中能使恒成立的条件序号是__________.13.已知,,,则的最小值为______.14.已知sin+cosα=,则sin2α=__15.已知等腰三角形底角的余弦值等于,则这个三角形顶角的正弦值为________.16.已知数列满足,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△中,所对的边分别为,,.(1)求;(2)若,求,,.18.若关于的不等式对一切实数都成立,求实数的取值范围.19.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.20.已知函数.(1)当时,判断并证明函数的奇偶性;(2)当时,判断并证明函数在上的单调性.21.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.2、C【解析】

由tanAtanB>1可得A,B都是锐角,故tanA和tanB都是正数,可得tan(A+B)<0,故A+B为钝角,C为锐角,可得结论.【详解】由△ABC中,A,B,C为三个内角,若tanAtanB>1,可得A,B都是锐角,故tanA和tanB都是正数,∴tan(A+B)0,故A+B为钝角.由三角形内角和为180°可得,C为锐角,故△ABC是锐角三角形,故选C.【点睛】本题考查根据三角函数值的符号判断角所在的范围,两角和的正切公式的应用,判断A+B为钝角,是解题的关键.3、A【解析】

由,代入运算即可得解.【详解】解:因为,,所以.故选:A.【点睛】本题考查了两角差的正切公式,属基础题.4、C【解析】试题分析:两点关于直线对称,则,点与的中点在直线上,,那么直线的斜率等于,中点坐标为,即中点坐标为,,整理得:,故选C.考点:求直线方程5、B【解析】

根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.6、A【解析】

根据投影公式,直接得到结果.【详解】,.故选A.【点睛】本题考查了投影公式,属于简单题型.7、C【解析】

根据为第二象限角,,,去掉绝对值,即可求解.【详解】因为为第二象限角,∴,,∴,故选C.【点睛】本题重点考查三角函数值的符合,三角函数在各个象限内的符号可以结合口诀:一全正,二正弦,三正切,四余弦,增加记忆印象,属于基础题8、A【解析】

先分别计算号数为奇数的概率、摸到黄球的概率、摸到红球的概率,从而可得摸到黄球且号数为奇数的学生,进而可得摸到红球且不喜欢数学课的学生人数,由此可得估计该校学生中喜欢数学课的人数比例.【详解】解:由题意,号数为奇数的概率为0.5,摸到黄球的概率为,摸到红球的概率为那么按概率计算摸到黄球且号数为奇数的学生有个共有32名学生站出来,则有12个摸到红球且不喜欢数学课的学生,不喜欢数学课的学生有:,喜欢数学课的有80个,估计该校学生中喜欢数学课的人数比例大约是:.故选:.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.9、C【解析】

根据直线方程求出斜率即可得到倾斜角.【详解】由题:直线的斜率为,所以倾斜角为120°.故选:C【点睛】此题考查根据直线方程求倾斜角,需要熟练掌握直线倾斜角与斜率的关系,熟记常见特殊角的三角函数值.10、D【解析】试题分析:因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.考点:重要不等式的运用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

把不等式转化为,即可求解.【详解】由题意,不等式,等价于,解得.即不等式的解为故答案为:.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.12、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函数,∴g(x)图象关于y轴对称,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函数,在[﹣,0)是减函数,故③x1>|x2|;④时,g(x1)>g(x2)恒成立,故答案为:③④.点睛:此题考查的是函数的单调性的应用;已知表达式,根据表达式判断函数的单调性,和奇偶性,偶函数在对称区间上的单调性相反,根据单调性的定义可知,增函数自变量越大函数值越大,减函数自变量越大函数值越小。13、【解析】

将所求的式子变形为,展开后可利用基本不等式求得最小值.【详解】解:,,,,当且仅当时取等号.故答案为1.【点睛】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.14、【解析】∵,∴即,则.故答案为:.15、【解析】

已知等腰三角形可知为锐角,利用三角形内角和为,建立底角和顶角之间的关系,再求解三角函数值.【详解】设此三角形的底角为,顶角为,易知为锐角,则,,所以.【点睛】给值求值的关键是找准角与角之间的关系,再利用已知的函数求解未知的函数值.16、【解析】

数列为以为首项,1为公差的等差数列。【详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【点睛】本题考查等差数列,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由得则有=得即.(2)由推出;而,即得,则有解得18、【解析】

对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【详解】当时,不等式对一切实数都成立,所以成立;当时,由题意得解得:;综上所述:.【点睛】本题考查不等式恒成立问题,注意运用分类讨论思想进行求解,同时也要结合二次函数的图象进行问题分析与求解.19、(1)证明见解析;(2)【解析】

(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则,所以即为二面角的平面角在中,,,所以,所以.【点睛】本题考查线面平行的证明,以及二面角的余弦值的求法,考查学生空间想象能力,计算能力,由一定综合性.20、(1)见解析;(2)见解析.【解析】

(1)将代入函数的解析式,利用函数的奇偶性定义来证明出函数的奇偶性;(2)将函数的解析式化为,然后利用函数单调性的定义证明出函数在上的单调性.【详解】(1)当时,,函数为上的奇函数.证明如下:,其定义域为,则,故函数为奇函数;(2)当时,函数在上单调递减.证明如下:,任取,则,又由,则,则有,即.因此,函数为上的减函数.【点睛】本题考查函数单调性与奇偶性的判定与证明,在利用定义证明函数的单调性与奇偶性时,要熟悉定义法证明函数奇偶性与单调性的基本步骤,考查逻辑推理能力与计算能力,属于中等题.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论