版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数相邻两个零点之间的距离为,将的图象向右平移个单位长度,所得的函数图象关于轴对称,则的一个值可能是()A. B. C. D.2.将正整数排列如下:123456789101112131415……则图中数出现在()A.第行列 B.第行列 C.第行列 D.第行列3.数列{an}中a1=﹣2,an+1=1,则a2019的值为()A.﹣2 B. C. D.4.过点,且圆心在直线上的圆的方程是()A. B.C. D.5.设△ABC的内角A,B,C所对的边长分别为a,b,c,且,则的最大值为()A. B.1 C. D.6.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.7.下列函数中,在区间上单调递增的是()A. B. C. D.8.数列,…的一个通项公式是()A.B.C.D.9.正方体中,的中点为,的中点为,则异面直线与所成的角是()A. B. C. D.10.数列,,,,,,的一个通项公式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列an中,a3=2,a12.设满足约束条件,则目标函数的最大值为______.13.已知数列满足,(),则________.14.已有无穷等比数列的各项的和为1,则的取值范围为__________.15.求值:_____.16.设函数f(x)是定义在R上的偶函数,且对称轴为x=1,已知当x∈[0,1]时,f(x)=121-x,则有下列结论:①2是函数fx的周期;②函数fx在1,2上递减,在2,3上递增;③函数f三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,值域为,求常数、的值;18.已知数列满足:,,数列满足:().(1)证明:数列是等比数列;(2)求数列的前项和,并比较与的大小.19.已知函数(1)解关于的不等式;(2)若,令,求函数的最小值.20.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?21.已知点,圆.(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先求周期,从而求得,再由图象变换求得.【详解】函数相邻两个零点之间的距离为,则周期为,∴,,图象向右平移个单位得,此函数图象关于轴对称,即为偶函数,∴,,.时,.故选D.【点睛】本题考查函数的图象与性质.考查图象平衡变换.在由图象确定函数解析式时,可由最大值和最小值确定,由“五点法”确定周期,从而确定,再由特殊值确定.2、B【解析】
计算每行首个数字的通项公式,再判断出现在第几列,得到答案.【详解】每行的首个数字为:1,2,4,7,11…利用累加法:计算知:数出现在第行列故答案选B【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键.3、B【解析】
根据递推公式,算出即可观察出数列的周期为3,根据周期即可得结果.【详解】解:由已知得,,,
,…,,
所以数列是以3为周期的周期数列,故,
故选:B.【点睛】本题考查递推数列的直接应用,难度较易.4、C【解析】
直接根据所给信息,利用排除法解题。【详解】本题作为选择题,可采用排除法,根据圆心在直线上,排除B、D,点在圆上,排除A故选C【点睛】本题考查利用排除法选出圆的标准方程,属于基础题。5、D【解析】
根据正弦定理将已知等式化简得,再根据差角正切公式以及基本不等式可得结论.【详解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,当且仅当,即时取等号.故选:D.【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.6、D【解析】
根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.7、A【解析】
判断每个函数在上的单调性即可.【详解】解:在上单调递增,,和在上都是单调递减.故选:A.【点睛】考查幂函数、指数函数、对数函数和反比例函数的单调性.8、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.9、D【解析】
首先根据得到异面直线与所成的角就是直线与所成角,再根据即可求出答案.【详解】由图知:取的中点,连接.因为,所以异面直线与所成的角就是直线与所成角.因为,所以,.因为,所以,.所以异面直线与所成的角为.故选:D【点睛】本题主要考查异面直线所成角,平移找角为解题的关键,属于简单题.10、C【解析】
首先注意到数列的奇数项为负,偶数项为正,其次数列各项绝对值构成一个以1为首项,以2为公差的等差数列,从而易求出其通项公式.【详解】∵数列{an}各项值为,,,,,,∴各项绝对值构成一个以1为首项,以2为公差的等差数列,∴|an|=2n﹣1又∵数列的奇数项为负,偶数项为正,∴an=(﹣1)n(2n﹣1).故选:C.【点睛】本题给出数列的前几项,猜想数列的通项,挖掘其规律是关键.解题时应注意数列的奇数项为负,偶数项为正,否则会错.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
先计算a5【详解】aaa故答案为4【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.12、7【解析】
首先画出可行域,然后判断目标函数的最优解,从而求出目标函数的最大值.【详解】如图,画出可行域,作出初始目标函数,平移目标函数,当目标函数过点时,目标函数取得最大值,,解得,.故填:7.【点睛】本题考查了线性规划问题,属于基础题型.13、31【解析】
根据数列的首项及递推公式依次求出、、……即可.【详解】解:,故答案为:【点睛】本题考查利用递推公式求出数列的项,属于基础题.14、【解析】
根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.15、【解析】
根据同角三角函数的基本关系:,以及反三角函数即可解决。【详解】由题意.故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,同角角三角函数基本关系主要有:,.属于基础题。16、①②④【解析】
依据题意作出函数f(x)的图像,通过图像可以判断以下结论是否正确。【详解】作出函数f(x)的图像,由图像可知2是函数fx的周期,函数fx在1,2上递减,在2,3上递增,函数当x∈3,4时,f(x)=f(x-4)=f(4-x)=故正确的结论有①②④。【点睛】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,;或,;【解析】
先利用辅助角公式化简,再根据,值域为求解即可.【详解】.又则,当时,,此时当时,,此时故,;或,;【点睛】本题主要考查了三角函数的辅助角公式以及三角函数值域的问题,需要根据自变量的范围求出值域,同时注意正弦函数部分的系数正负,属于中等题型.18、(1)见证明;(2)见解析【解析】
(1)将原式变形为,进而得到结果;(2)根据第一问得到,错位相减得到结果.【详解】(1)由条件得,易知,两边同除以得,又,故数列是等比数列,其公比为.(2)由(1)知,则……①……②两式相减得即.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.19、(1)答案不唯一,具体见解析(2)【解析】
(1)讨论的范围,分情况得的三个答案.(2)时,写出表达式,利用均值不等式得到最小值.【详解】(1)①当时,不等式的解集为,②当时,不等式的解集为,③当时,不等式的解集为(2)若时,令(当且仅当,即时取等号).故函数的最小值为.【点睛】本题考查了解不等式,均值不等式,函数的最小值,意在考查学生的综合应用能力.20、(1),;(2).【解析】
(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【点睛】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.21、(1)或.(2)【解析】
(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高速公路合同制收费员二零二五年度服务质量监督与反馈协议3篇
- 2025年度落水管安装与水质净化服务合同4篇
- 二零二五年度木屋建造与木材加工工艺改进合同4篇
- 咖啡馆品牌形象包装设计考核试卷
- 客运站服务创新实践考核试卷
- 2025版养老信托资金借款合同3篇
- 2025版电子商务合同争议解决程序与法律适用合同4篇
- 二零二五年度软件开发与经销合同2篇
- 2025版学校教师培训与发展聘用合同样本3篇
- 2025年外汇交易居间服务合同
- GB/T 16895.3-2024低压电气装置第5-54部分:电气设备的选择和安装接地配置和保护导体
- 计划合同部部长述职报告范文
- 窗帘采购投标方案(技术方案)
- 基于学习任务群的小学语文单元整体教学设计策略的探究
- 人教版高中物理必修一同步课时作业(全册)
- 食堂油锅起火演练方案及流程
- 《呼吸衰竭的治疗》
- 2024年度医患沟通课件
- 2024年中考政治总复习初中道德与法治知识点总结(重点标记版)
- 2024年手术室的应急预案
- 五年级上册小数除法竖式计算练习300题及答案
评论
0/150
提交评论