版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点关于直线的对称点的坐标为()A. B. C. D.2.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件3.在ΔABC中,内角A,B,C的对边分别为a,b,c.若3asinC=A.π6 B.π3 C.2π4.已知等比数列的前n项和为,若,,则()A. B. C.1 D.25.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.756.已知,下列不等式中必成立的一个是()A. B. C. D.7.已知,且为第二象限角,则()A. B. C. D.8.设是两条不同的直线,是两个不同的平面,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则9.如图是一个几何体的三视图,它对应的几何体的名称是()A.棱台 B.圆台 C.圆柱 D.圆锥10.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列二、填空题:本大题共6小题,每小题5分,共30分。11.若直线上存在满足以下条件的点:过点作圆的两条切线(切点分别为),四边形的面积等于,则实数的取值范围是_______12.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.13.不等式的解集为________.14.在中角所对的边分别为,若则___________15.若存在实数使得关于的不等式恒成立,则实数的取值范围是____.16.辗转相除法,又名欧几里得算法,是求两个正整数之最大公约数的算法,它是已知最古老的算法之一,在中国则可以追溯至汉朝时期出现的《九章算术》.下图中的程序框图所描述的算法就是辗转相除法.若输入、的值分别为、,则执行程序后输出的的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角、、所对的边分别为,,,且满足.(1)求角的大小;(2)若,是方程的两根,求的值.18.已知数列,.(1)记,证明:是等比数列;(2)当是奇数时,证明:;(3)证明:.19.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.20.已知等比数列的各项均为正数,且,,数列的前项和.(1)求;(2)记,求数列的前项和.21.如图长方体中,,分别为棱,的中点(1)求证:平面平面;(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.2、A【解析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.3、A【解析】
根据正弦定理asinA=csinC将题干等式化为3sinAsin【详解】∵3asinC=3ccosA,所以3sinAsin【点睛】本题考查运用正弦定理求三角形内角,属于基础题。4、C【解析】
利用等比数列的前项和公式列出方程组,能求出首项.【详解】等比数列的前项和为,,,,解得,.故选:.【点睛】本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.5、D【解析】
由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.6、B【解析】
根据不等式的性质,对选项逐一分析,由此确定正确选项.【详解】对于A选项,由于,不等号方向不相同,不能相加,故A选项错误.对于B选项,由于,所以,而,根据不等式的性质有:,故B选项正确.对于C选项,,而两个数的正负无法确定,故无法判断的大小关系,故C选项错误.对于D选项,,而两个数的正负无法确定,故无法判断的大小关系,故D选项错误.故选:B.【点睛】本小题主要考查根据不等式的性质判断不等式是否成立,属于基础题.7、D【解析】
首先根据题意得到,,再计算即可.【详解】因为,且为第二象限角,,..故选:D【点睛】本题主要考查正切二倍角的计算,同时考查了三角函数的诱导公式和同角三角函数的关系,属于简单题.8、D【解析】
对于A,利用线面平行的判定可得A正确.对于B,利用线面垂直的性质可得B正确.对于C,利用面面垂直的判定可得C正确.根据平面与平面的位置关系即可判断D不正确.【详解】对于A,根据平面外的一条直线与平面内的一条直线平行,则这条直线平行于这个平面,可判定A正确.对于B,根据垂直于同一个平面的两条直线平行,判定B正确.对于C,根据一个平面过另一个平面的垂线,则这两个平面垂直,可判定C正确.对于D,若,则或相交,所以D不正确.故选:D【点睛】本题主要考查了线面平行和面面垂直的判定,同时考查了线面垂直的性质,属于中档题.9、B【解析】
直接由三视图还原原几何体得答案.【详解】解:由三视图还原原几何体如图,该几何体为圆台.故选:.【点睛】本题考查三视图,关键是由三视图还原原几何体,属于基础题.10、B【解析】
根据题意,构造数列,利用数列求和推出的位置.【详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
通过画出图形,可计算出圆心到直线的最短距离,建立不等式即可得到的取值范围.【详解】作出图形,由题意可知,,此时,四边形即为,而,故,勾股定理可知,而要是得存在点P满足该条件,只需O到直线的距离不大于即可,即,所以,故的取值范围是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式,意在考查学生的转化能力,计算能力,分析能力,难度中等.12、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.13、【解析】
将三阶矩阵化为普通运算,利用指数函数的性质即可求出不等式的解集.【详解】不等式化为,整理得,,,即,,即不等式的解集为故答案为:【点睛】此题考查了其他不等式的解法,指数函数的性质,以及三阶矩阵,是一道中档题.14、【解析】,;由正弦定理,得,解得.考点:正弦定理.15、【解析】
先求得的取值范围,将题目所给不等式转化为含的绝对值不等式,对分成三种情况,结合绝对值不等式的解法和不等式恒成立的思想,求得的取值范围.【详解】由于,故可化简得恒成立.当时,显然成立.当时,可得,,可得且,可得,即,解得.当时,可得,可得且,可得,即,解得.综上所述,的取值范围是.【点睛】本小题主要考查三角函数的值域,考查含有绝对值不等式恒成立问题,考查存在性问题的求解策略,考查函数的单调性,考查化归与转化的数学思想方法,属于难题.16、【解析】
程序的运行功能是求,的最大公约数,根据辗转相除法可得的值.【详解】由程序语言知:算法的功能是利用辗转相除法求、的最大公约数,当输入的,,;,,可得输出的.【点睛】本题主要考查了辗转相除法的程序框图的理解,掌握辗转相除法的操作流程是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由,可得:,再用正弦定理可得:,从而求得的值;(2)根据题意由韦达定理和余弦定理列出关于的方程求解即可.【详解】(1)由,得:,可得:,得.由正弦定理有:,由,有,故,可得,由,有.(2)由,是方程的两根,得,利用余弦定理得而,可得.【点睛】本题考查了三角形的正余弦定理的应用,化简与求值,属于基础题.18、(1)见解析;(2)见解析;(3)见解析【解析】
(1)对递推关系进行变形得,从而证明是等比数列;(2)由(1)得,代入所证式子,再利用放缩法进行证明;(3)由(2)可知,对分偶数和奇数计论,放缩法和等比数列求和,即可证明结论.【详解】(1)∵,∴,且所以,数列是首项为,公比为3的等比数列.(2)由(1)可知当k是奇数时,(3)由(2)可知,当为偶数时,当为奇数时,所以.【点睛】本题考查等比数列的定义证明、等比数列前项和、不等式的放缩法证明,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的突破口.19、(1)见解析(2)【解析】
(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【点睛】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了异面直线所成角的求法,是中档题.20、(1)(2)【解析】
(1)先设等比数列的公比为,再求解即可;(2)由已知条件可得,再利用错位相减法求和即可.【详解】解:(1)设等比数列的公比为,则,由,,则,即,则,(2)由数列的前项和,则,即当时,,即,又,所以,,①,②①-②得:,即.【点睛】本题考查了等比数列通项公式的求法,重点考查了错位相减法求数列前项和,属中档题.21、(1)见证明;(2);画图见解析【解析】
(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.【详解】(1)证明:在长方体中,,分别为棱,的中点,所以平面,则,在中,,在中,,所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面(2)如图所示:设,连接,取中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色手绘风教学方法与课堂管理主题
- 小儿高热的护理小儿发热健康指导培训课件
- 百货业态的营销管理目录课件2
- 电气工程培训课件
- 2024-2025学年北京五十五中九年级(上)调研数学试卷(12月份)
- 山西省大同一中等重点中学2025届高三第二次调研语文试卷含解析
- 林下中草药合作种植协议书范本
- 恋爱期间不发生亲密关系的合同
- 房租合同法规
- 房屋租赁合同纠纷意见
- 2024年职业健康素养考试题库及答案
- (新北师大版2024)2024-2025学年七年级数学上学期期中测试卷
- 塑造宠物食品品牌
- 2024年山东省青岛市中考地理试题卷(含答案及解析)
- 美发保底劳务合同模板
- 《技术规程》范本
- 2024秋期国家开放大学本科《中国当代文学专题》一平台在线形考(形考任务一至六)试题及答案
- 期末(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 第五单元简易方程 提升练习题(单元测试)-2024-2025学年五年级上册数学人教版
- 重点语法清单2024-2025学年人教版英语八年级上册
- NGS与感染性疾病医学课件
评论
0/150
提交评论