2023年湖南省沅江三中数学高一第二学期期末检测模拟试题含解析_第1页
2023年湖南省沅江三中数学高一第二学期期末检测模拟试题含解析_第2页
2023年湖南省沅江三中数学高一第二学期期末检测模拟试题含解析_第3页
2023年湖南省沅江三中数学高一第二学期期末检测模拟试题含解析_第4页
2023年湖南省沅江三中数学高一第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若a<b,则下列不等式中正确的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc22.在中,,,则()A. B. C. D.3.两数与的等比中项是()A.1 B.-1 C.±1 D.4.已知数列的前项和,则的值为()A.-199 B.199 C.-101 D.1015.下列函数中,最小值为2的函数是()A. B.C. D.6.关于的方程在内有相异两实根,则实数的取值范围为()A. B. C. D.7.直线上的点到圆上点的最近距离为()A. B. C. D.18.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.9.等差数列中,已知,且公差,则其前项和取最小值时的的值为()A.6 B.7 C.8 D.910.已知向量,,,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等边三角形的边长为2,点P在边上,点Q在边的延长线上,若,则的最小值为______.12.已知数列是等差数列,若,,则________.13.已知向量,则___________.14.空间一点到坐标原点的距离是_______.15.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________16.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,(Ⅰ)求;(Ⅱ)若,,求的值18.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.19.如图,等边所在的平面与菱形所在的平面垂直,分别是的中点.(1)求证:平面;(2)若,,求三棱锥的体积20.在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.21.已知向量,.(1)若,在集合中取值,求满足的概率;(2)若,在区间内取值,求满足的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用特殊值对错误选项进行排除,然后证明正确的不等式.【详解】取代入验证可知,A、D选项错误;取代入验证可知,B选项错误.对于C选项,由于,所以,即成立.故选:C【点睛】本小题主要考查不等式的性质,属于基础题.2、A【解析】

本题首先可根据计算出的值,然后根据正弦定理以及即可计算出的值,最后得出结果。【详解】因为,所以.由正弦定理可知,即,解得,故选A。【点睛】本题考查根据解三角形的相关公式计算的值,考查同角三角函数的相关公式,考查正弦定理的使用,是简单题。3、C【解析】试题分析:设两数的等比中项为,等比中项为-1或1考点:等比中项4、D【解析】

由特点可采用并项求和的方式求得.【详解】本题正确选项:【点睛】本题考查并项求和法求解数列的前项和,属于基础题.5、C【解析】

利用基本不等式及函数的单调性即可判断.【详解】解:对于.时,,故错误.对于.,可得,,当且仅当,即时取等号,故最小值不可能为1,故错误.对于,可得,,当且仅当时取等号,最小值为1.对于.,函数在上单调递增,在上单调递减,,故不对;故选:.【点睛】本题考查基本不等式,难点在于应用基本不等式时对“一正二定三等”条件的理解与灵活应用,属于中档题.6、C【解析】

将问题转化为与有两个不同的交点;根据可得,对照的图象可构造出不等式求得结果.【详解】方程有两个相异实根等价于与有两个不同的交点当时,由图象可知:,解得:本题正确选项:【点睛】本题考查正弦型函数的图象应用,主要是根据方程根的个数确定参数范围,关键是能够将问题转化为交点个数问题,利用数形结合来进行求解.7、C【解析】

求出圆心和半径,求圆心到直线的距离,此距离减去半径即得所求的结果.【详解】将圆化为标准形式可得可得圆心为,半径,而圆心到直线距离为,

因此圆上点到直线的最短距离为,故选:C.【点睛】本题考查直线和圆的位置关系,点到直线的距离公式的应用,求圆心到直线的距离是解题的关键,属于中档题.8、D【解析】

利用弧长公式列出方程直接求解,即可得到答案.【详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【点睛】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.9、C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C.10、D【解析】

直接利用向量的数量积转化求解向量的夹角即可.【详解】因为,所以与的夹角为.故选:D.【点睛】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

以为轴建立平面直角坐标系,设,用t表示,求其最小值即可得到本题答案.【详解】过点A作BC的垂线,垂足为O,以为轴建立平面直角坐标系.作PM垂直BC交于点M,QH垂直y轴交于点H,CN垂直HQ交于点N.设,则,故有所以,,当时,取最小值.故答案为:【点睛】本题主要考查利用建立平面直角坐标系解决向量的取值范围问题.12、【解析】

求出公差,利用通项公式即可求解.【详解】设公差为,则所以故答案为:【点睛】本题主要考查了等差数列基本量的计算,属于基础题.13、【解析】

根据向量夹角公式可求出结果.【详解】.【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.14、【解析】

直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.15、【解析】

根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【点睛】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.16、825【解析】

以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【点睛】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由正弦定理、二倍角公式,结合可将已知边角关系式化简为,从而求得,根据可求得;(Ⅱ)由三角形面积公式可求得;利用余弦定理可构造方程求得结果.【详解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,属于常考题型.18、(1)证明见解析;(2)证明见解析【解析】

(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2)因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.19、(1)证明见解析;(2).【解析】

解法一:(1)取中点,连接,,证出,利用线面平行的判定定理即可证出.(2)取中点,连接,利用面面垂直的性质定理可得平面,过作于,可得平面,由即可求解.解法二:(1)取中点,连接,证出平面,平面,利用面面平行的判定定理可证出平面平面,再利用面面平行的性质定理即可证出.(2)取中点,连接,根据面面垂直的性质定理可得平面,再由,利用三棱锥的体积公式即可求解.【详解】解法一:(1)取中点,连接,.因为分别是的中点,所以,且,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)取中点,连接,则,且,因为平面平面,平面平面,平面,所以平面同理,在平面内,过作于,则平面,且,因为为的中点,所以,所以,.解法二:(1)取中点,连接,因为为的中点,所以,因为平面,平面,所以平面.因为,且,所以四边形为平行四边形,故,因为平面,平面,所以平面,因为,平面,所以平面平面,因为平面,所以平面.(2)取中点,连接,依题意,为等边三角形,所以,且.因为平面平面,平面平面,平面,所以平面.因为是的中点,所以,所以.【点睛】本小题主要考查几何体的体积及、直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想等.20、(Ⅰ).=.(Ⅱ).【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.21、(1)(2)【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论