




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是单调递增函数”的一个函数可以是()A. B.C. D.2.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中正确的命题是()A.①② B.②③ C.③④ D.④3.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为()A. B. C. D.4.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择的游戏盘是A. B. C. D.5.已知是所在平面内一点,且满足,则为A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形6.若,,则的最小值为()A.2 B. C. D.7.已知变量与负相关,且由观测数据算得样本平均数,则由该观测数据算得的线性回归方程可能是A. B.C. D.8.如图是正方体的展开图,则在这个正方体中:①与平行;②与是异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的序号是A.①②③ B.②④ C.③④ D.②③④9.已知数列满足,则()A. B. C. D.10.已知,则的值为()A. B. C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,它的值域是__________.12.数列的前项和,则__________.13.若点在幂函数的图像上,则函数的反函数=________.14.如图,分别沿长方形纸片和正方形纸片的对角线剪开,拼成如图所示的平行四边形,且中间的四边形为正方形.在平行四边形内随机取一点,则此点取自阴影部分的概率是______________15.已知数列满足:(),设的前项和为,则______;16.若a、b、c正数依次成等差数列,则的最小值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C所对的边分别为a,b,c,.(1)求角C;(2)若,,求的面积.18.数列中,,(为常数,1,2,3,…),且.(1)求c的值;(2)求证:①;②;(3)比较++…+与的大小,并加以证明.19.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).20.某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:组号分组频数频率第1组[50,60)50.05第2组[60,70)0.35第3组[70,80)30第4组[80,90)200.20第5组[90,100]100.10合计1001.00(Ⅰ)求的值;(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.21.已知函数.(1)求证:;(2)若角满足,求锐角的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用正弦函数、余弦函数的图象和性质,逐一检验,可得结论.【详解】A,对于y=cos(),它的周期为4π,故不满足条件.B,对于y=sin(2x),在区间上,2x∈[,],故该函数在区间上不是单调递增函数,故不满足条件.C,对于y=cos(2x),当x时,函数y,不是最值,故不满足②它的图象关于直线x对称,故不满足条件.D,对于y=sin(2x),它的周期为π,当x时,函数y=1,是函数的最大值,满足它的图象关于直线x对称;且在区间上,2x∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.【点睛】本题主要考查了正弦函数、余弦函数的图象和性质,属于中档题.2、D【解析】
利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可.【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题.故选D.【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.3、B【解析】
根据母线长和母线与轴的夹角求得底面半径和圆锥的高,代入体积公式求得结果.【详解】由题意可知,底面半径;圆锥的高圆锥体积本题正确选项:【点睛】本题考查锥体体积的求解问题,属于基础题.4、A【解析】由几何概型公式:A中的概率为,B中的概率为,C中的概率为,D中的概率为.本题选择A选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.5、B【解析】
由向量的减法法则,将题中等式化简得,进而得到,由此可得以为邻边的平行四边形为矩形,得的形状是直角三角形。【详解】因为,,因为,所以,因为,所以,由此可得以为邻边的平行四边形为矩形,所以,得的形状是直角三角形。【点睛】本题给出向量等式,判断三角形的形状,着重考查平面向量的加法、减法法则和三角形的形状判断等知识。6、D【解析】
根据所给等量关系,用表示出可得.代入中,构造基本不等式即可求得的最小值.【详解】因为,所以变形可得所以由基本不等式可得当且仅当时取等号,解得所以的最小值为故选:D【点睛】本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.7、D【解析】
由于变量与负相关,得回归直线的斜率为负数,再由回归直线经过样本点的中心,得到可能的回归直线方程.【详解】由于变量与负相关,排除A,B,把代入直线得:成立,所以在直线上,故选D.【点睛】本题考查回归直线斜率的正负、回归直线过样本点中心,考查基本数据处理能力.8、C【解析】
将正方体的展开图还原为正方体后,即可得到所求正确结论.【详解】将正方体的展开图还原为正方体ABCD﹣EFMN后,可得AF,CN异面;BM,AN平行;连接AN,NF,可得∠FAN为AF,BM所成角,且为60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正确,故选C.【点睛】本题考查展开图与空间几何体的关系,考查空间线线的位置关系的判断,属于基础题.9、B【解析】
分别令,求得不等式,由此证得成立.【详解】当时,,当时,,当时,,所以,所以,故选B.【点睛】本小题主要考查根据数列递推关系判断项的大小关系,属于基础题.10、B【解析】
根据两角和的正切公式,结合,可以求出的值,用同角的三角函数的关系式中的平方和关系把等式变成分子、分母的齐次式形式,最后代入求值即可.【详解】..故选:B【点睛】本题考查了同角的三角函数关系式的应用,考查了二倍角的正弦公式,考查了两角和的正切公式,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由反余弦函数的值域可求出函数的值域.【详解】,,因此,函数的值域为.故答案为:.【点睛】本题考查反三角函数值域的求解,解题的关键就是依据反余弦函数的值域进行计算,考查计算能力,属于基础题.12、【解析】
根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.13、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
设正方形的边长为,正方形的边长为,分别求出阴影部分的面积和平行四边形的面积,最后利用几何概型公式求出概率.【详解】设正方形的边长为,正方形的边长为,在长方形中,,故平行四边形的面积为,阴影部分的面积为,所以在平行四边形KLMN内随机取一点,则此点取自阴影部分的概率是.【点睛】本题考查了几何概型概率的求法,求出平行四边形的面积是解题的关键.15、130【解析】
先利用递推公式计算出的通项公式,然后利用错位相减法可求得的表达式,即可完成的求解.【详解】因为,所以,所以,所以,又因为,不符合时的通项公式,所以,当时,,所以,所以,所以,所以.故答案为:.【点睛】本题考查根据数列的递推公式求通项公式以及错位相减法的使用,难度一般.利用递推公式求解数列的通项公式时,若出现了的形式,一定要注意标注,同时要验证是否满足的情况,这决定了通项公式是否需要分段去写.16、1【解析】
由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【点睛】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理进行边化角,然后得到的值,从而得到;(2)根据余弦定理,得到关于的方程,从而得到,再根据面积公式,得到答案.【详解】(1)在中,根据正弦定理,由,可得,所以,因为为内角,所以,所以因为为内角,所以,(2)在中,,,由余弦定理得解得,所以.【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.18、(1);(2)①见证明;②见证明;(3)++…+,证明见解析【解析】
(1)将代入,结合可求出的值;(2)可知,,即可证明结论;(3)由题意可得,从而可得到,求和可得,然后作差,通过讨论可比较二者大小.【详解】(1)由题意:,.而,得,即,解得或,因为,所以满足题意.(2)因为,所以.则.,因为,,所以,所以.(3)由,可得,从而,所以.因为,所以,所以.,,,,当n=1时,,故;当n=2时,,;当n≥3时,,则,.【点睛】本题主要考查了数列的递推关系式和数列的求和,考查了不等式的证明,考查了学生的逻辑推理能力与计算能力,属于难题.19、(1),;(2)x>,是减函数.【解析】
(1)画出图形,分别求出四棱锥的高,及侧面的高的表达式,即可求出表面积与体积的表达式;(2)结合表达式,可求出的范围,即定义域,然后判断其为减函数.【详解】(1)过点作平面的垂线,垂足为,取的中点,连结,因为为正四棱锥,所以,,,,所以四棱锥的表面积为,体积.(2),解得,是减函数.【点睛】本题考查了四棱锥的结构特征,考查了表面积与体积的计算,考查了学生的空间想象能力与计算能力,属于中档题.20、(1)35,0.30;(2).【解析】试题分析:(Ⅰ)直接利用频率和等于1求出b,用样本容量乘以频率求a的值;(Ⅱ)由分层抽样方法求出所抽取的6人中第三、第四、第五组的学生数,利用列举法写出从中任意抽取2人的所有方法种数,查出2人至少1人来自第四组的事件个数,然后利用古典概型的概率计算公式求解.试题解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30(Ⅱ)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为,第3组:×30=3人,第4组:×20=2人,第5组:×10=1人,所以第3、4、5组应分别抽取3人、2人、1人设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4组被入选的有9种,所以其中第4组的2位同学至少有1位同学入选的概率为=点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物流三方协议
- 北华航天工业学院《植物生殖生物学》2023-2024学年第二学期期末试卷
- 北海康养职业学院《古生物学与地史学》2023-2024学年第二学期期末试卷
- 保定职业技术学院《应用光学》2023-2024学年第二学期期末试卷
- 2025至2031年中国电脑连接线行业投资前景及策略咨询研究报告
- 2025至2031年中国灯具遮光板行业投资前景及策略咨询研究报告
- 蚌埠医学院《新媒体动画制作》2023-2024学年第二学期期末试卷
- 重阳节主题班会 11
- 低幼儿童文学复习测试卷
- DB13T 5148-2019 铁矿床三维建模技术规范
- 有源医疗器械现场检查
- 电力设备交接和预防性试验规程
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 银行催收实习心得
- 2024年高考政治总复习必修三《政治与法治》 综合测试题及答案
- 2025年注册安全工程师考试道路运输和其他安全(初级)安全生产实务试题及解答参考
- 2025年湖南省高中学业水平合格性考试数学试卷(含答案)
- 气压传动课件 项目二任务二 压力控制回路的组装与调试
- 《环境保护产品技术要求 工业废气吸附净化装置》HJT 386-2007
- 中国文化概况chapter-1
- 事业单位公开招聘报名表
评论
0/150
提交评论