版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的定义域为,若对于,,,,,分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()A.; B.;C.; D.2.若,,则与向量同向的单位向量是()A. B. C. D.3.已知点,点满足线性约束条件O为坐标原点,那么的最小值是A. B. C. D.4.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.5.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为()A. B. C. D.7.若则一定有()A. B. C. D.8.一个正方体的体积是8,则这个正方体的内切球的表面积是()A.8π B.6π C.4π D.π9.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=10.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若圆弧长度等于圆内接正六边形的边长,则该圆弧所对圆心角的弧度数为________.12.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.13.已知直线与轴、轴相交于两点,点在圆上移动,则面积的最大值和最小值之差为.14.已知与的夹角为求=_____.15.已知,,若,则实数________.16.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记Sn为等比数列的前n项和,已知S2=2,S3=-6.(1)求的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.18.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积19.为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)A、B两位同学各加工的10个零件直径的平均数与方差列于下表;平均数方差A200.016B20s2B根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.20.已知,且(1)求的值;(2)求的值.21.设函数.(1)求;(2)求函数在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.2、A【解析】
先求出的坐标,然后即可算出【详解】因为,所以所以与向量同向的单位向量是故选:A【点睛】本题考查的是向量的坐标运算,属于基础题3、D【解析】
点满足线性约束条件∵令目标函数画出可行域如图所示,联立方程解得在点处取得最小值:故选D【点睛】此题主要考查简单的线性规划问题以及向量的内积的问题,解决此题的关键是能够找出目标函数.4、A【解析】
由正弦定理可得,再结合求解即可.【详解】解:由,又,则,由,则,故选:A.【点睛】本题考查了正弦定理,属基础题.5、A【解析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.6、A【解析】
利用弧长公式、扇形的面积计算公式即可得出.【详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题.7、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选8、C【解析】设正方体的棱长为a,则=8,∴a=2.而此正方体的内切球直径为2,∴S表=4π=4π.选C.9、B【解析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.10、B【解析】
先根据斜二测画法的性质求出原图形,再分析绕AB所在直线旋转一周后形成的几何体的表面积即可.【详解】根据斜二测画法的性质可知,原是以为底,高为的等腰三角形.又.故为边长为2的正三角形.则绕AB所在直线旋转一周后形成的几何体可看做两个以底面半径为,高为的圆锥组合而成.故表面积为.故选:B【点睛】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据圆的内接正六边形的边长得出弧长,利用弧长公式即可得到圆心角.【详解】因为圆的内接正六边形的边长等于圆的半径,所以圆弧长所对圆心角的弧度数为1.故答案为:1【点睛】此题考查弧长公式,根据弧长求圆心角的大小,关键在于熟记圆的内接正六边形的边长.12、4【解析】
直接利用分层抽样的比例关系得到答案.【详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【点睛】本题考查了分层抽样的相关计算,意在考查学生的计算能力.13、15【解析】
解:设作出与已知直线平行且与圆相切的直线,
切点分别为,如图所示
则动点C在圆上移动时,若C与点重合时,
△ABC面积达到最小值;而C与点重合时,△ABC面积达到最大值
∵直线3x+4y−12=0与x轴、y轴相交于A(4,0)、B(0,3)两点
可得∴△ABC面积的最大值和最小值之差为
,
其中分别为点、点到直线AB的距离
∵是圆(x−5)2+(y−6)2=9的两条平行切线与圆的切点
∴点、点到直线AB的距离之差等于圆的直径,即
因此△ABC面积的最大值和最小值之差为
故答案为:1514、【解析】
由题意可得:,结合向量的运算法则和向量模的计算公式可得的值.【详解】由题意可得:,则:.【点睛】本题主要考查向量模的求解,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.15、2或【解析】
根据向量平行的充要条件代入即可得解.【详解】由有:,解得或.故答案为:2或.【点睛】本题考查了向量平行的应用,属于基础题.16、【解析】
首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】试题分析:(1)由等比数列通项公式解得,即可求解;(2)利用等差中项证明Sn+1,Sn,Sn+2成等差数列.试题解析:(1)设的公比为.由题设可得,解得,.故的通项公式为.(2)由(1)可得.由于,故,,成等差数列.点睛:等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18、(1);(2).【解析】
(1)根据正弦定理把题设等式中的边换成相应角的正弦,化简整理可求得,进而求得;(2)根据余弦定理得,结合求得的值,进而由三角形的面积公式求得面积.【详解】(1)根据正弦定理,又,.(2)由余弦定理得:,代入得,故面积为【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19、(Ⅰ)0.008,B的成绩好些(Ⅱ)派A去参赛较合适【解析】
(Ⅰ)利用方差的公式,求得S2A>S2B,从而在平均数相同的情况下,B的波动较小,由此得到B的成绩好一些;(Ⅱ)从图中折线趋势可知尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,从而派A去参赛较合适.【详解】(Ⅰ)由题意,根据表中的数据,利用方差的计算公式,可得S2B∴S2A>S2B,∴在平均数相同的情况下,B的波动较小,∴B的成绩好些.(Ⅱ)从图中折线趋势可知:尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,∴派A去参赛较合适.【点睛】本题主要考查了方差的求法及其应用,同时考查了折线图、方差的性质等基础知识.20、(1);(2).【解析】
(1)由条件先求得然后再用二倍角公式求;(2)利用角的变换求出,在根据的范围确定的值.【详解】(1)因为,所以,所以,所以;(2)因为,所以因为,所以,由(1)得,所以=,因为,所以.【点睛】根据已知条件求角的步骤:(1)求角的某一个三角函数值;(2)确定角的范围;(3)根据角的范围写出所求的角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度资产评估咨询与实施合同2篇
- 2024年版建筑设备安装施工承包合同版B版
- 2024版主题餐厅股权收购及经营管理权移交合同3篇
- 2024年度水利水电施工安全责任保险合同3篇
- 2024年农产品深加工项目投资合作合同3篇
- 2024年度陕西省物业管理合同
- 灯具采购合同
- 承接草籽工程合同模板
- 2024年度智慧农业土地耕作与智能灌溉合同3篇
- 2024年度人工智能医疗设备研发与授权协议2篇
- 2024年职业健康素养考试题库及答案
- (新北师大版2024)2024-2025学年七年级数学上学期期中测试卷
- 塑造宠物食品品牌
- 2024年山东省青岛市中考地理试题卷(含答案及解析)
- 美发保底劳务合同模板
- 《技术规程》范本
- 2024秋期国家开放大学本科《中国当代文学专题》一平台在线形考(形考任务一至六)试题及答案
- 期末(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 第五单元简易方程 提升练习题(单元测试)-2024-2025学年五年级上册数学人教版
- 重点语法清单2024-2025学年人教版英语八年级上册
- NGS与感染性疾病医学课件
评论
0/150
提交评论