版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,、、分别是角、、的对边,若,则的形状是()A.等腰三角形 B.钝角三角形 C.直角三角形 D.锐角三角形2.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或33.已知三条相交于一点的线段两两垂直且在同一平面内,在平面外、平面于,则垂足是的()A.内心 B.外心 C.重心 D.垂心4.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差5.在等比数列中,若,则的值为()A. B. C. D.6.若点,关于直线l对称,则l的方程为()A. B.C. D.7.在中,角,,的对边分别为,,,且.则()A. B.或 C. D.8.若则所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.设,则使函数的定义域是,且为偶函数的所有的值是()A.0,2 B.0,-2 C. D.210.已知一扇形的周长为,圆心角为,则该扇形的面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在时取得最小值,则________.12.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).13.数列的前项和为,若数列的各项按如下规律排列:,,,,,,,,,,…,,,…,,…有如下运算和结论:①;②数列,,,,…是等比数列;③数列,,,,…的前项和为;④若存在正整数,使,,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)14.已知锐角、满足,,则________.15.执行如图所示的程序框图,则输出的_______.16.在中,角的对边分别为,且面积为,则面积的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?18.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.19.已知在直角三角形ABC中,,(如右图所示)(Ⅰ)若以AC为轴,直角三角形ABC旋转一周,试说明所得几何体的结构特征并求所得几何体的表面积.(Ⅱ)一只蚂蚁在问题(Ⅰ)形成的几何体上从点B绕着几何体的侧面爬行一周回到点B,求蚂蚁爬行的最短距离.20.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.21.已知且,比较与的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由正弦定理和,可得,在利用三角恒等变换的公式,化简得,即可求解.【详解】在中,由正弦定理,由,可得,又由,则,即,即,解得,所以为等腰三角形,故选A.【点睛】本题主要考查了正弦定理的应用,以及三角形形状的判定,其中解答中熟练应用正弦定理的边角互化,合理利用三角恒等变换的公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】
两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.3、D【解析】
根据题意,结合线线垂直推证线面垂直,以及根据线面垂直推证线线垂直,即可求解。【详解】连接BH,延长BH与AC相交于E,连接AH,延长AH交BC于D,作图如下:因为,故平面PBC,又平面PBC,故;因为平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE与AD交于点H,故H点为的垂心.故选:D.【点睛】本题考查线线垂直与线面垂直之间的相互转化,属综合中档题.4、A【解析】
可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.5、B【解析】
根据等比数列的性质:若,则.【详解】等比数列中,,,故选B.【点睛】本题考查等比数列的通项公式和性质,此题也可用通项公式求解.6、A【解析】
根据A,B关于直线l对称,直线l经过AB中点且直线l和AB垂直,可得l的方程.【详解】由题意可知AB中点坐标是,,因为A,B关于直线l对称,所以直线l经过AB中点且直线l和AB垂直,所以直线l的斜率为,所以直线l的方程为,即,故选:A.【点睛】本题考查直线位置关系的应用,垂直关系利用斜率之积为求解,属于简单题.7、A【解析】
利用余弦定理和正弦定理化简已知条件,求得的值,即而求得的大小.【详解】由于,所以,由余弦定理和正弦定理得,即,由于是三角形的内角,所以为正数,所以,为三角形的内角,所以.故选:A【点睛】本小题主要考查正弦定理和余弦定理边角互化,考查三角形的内角和定理,考查两角和的正弦公式,属于基础题.8、C【解析】
根据已知不等式可得,;根据各象限内三角函数的符号可确定角所处的象限.【详解】由知:,在第三象限故选:【点睛】本题考查三角函数在各象限内的符号,属于基础题.9、D【解析】
根据幂函数的性质,结合题中条件,即可得出结果.【详解】若函数的定义域是,则;又函数为偶函数,所以只能使偶数;因为,所以能取的值为2.故选D【点睛】本题主要考查幂函数性质的应用,熟记幂函数的性质即可,属于常考题型.10、C【解析】
根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解.【详解】设扇形的弧长为,半径为,扇形的圆心角的弧度数是.
则由题意可得:.
可得:,解得:,.可得:故选:C【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式12、<【解析】
直接利用作差比较法解答.【详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【点睛】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、①③④【解析】
根据题中所给的条件,将数列的项逐个写出,可以求得,将数列的各项求出,可以发现其为等差数列,故不是等比数列,利用求和公式求得结果,结合条件,去挖掘条件,最后得到正确的结果.【详解】对于①,前24项构成的数列是,所以,故①正确;对于②,数列是,可知其为等差数列,不是等比数列,故②不正确;对于③,由上边结论可知是以为首项,以为公比的等比数列,所以有,故③正确;对于④,由③知,即,解得,且,故④正确;故答案是①③④.【点睛】该题考查的是有关数列的性质以及对应量的运算,解题的思想是观察数列的通项公式,理解项与和的关系,认真分析,仔细求解,从而求得结果.14、.【解析】试题分析:由题意,所以.考点:三角函数运算.15、【解析】
按照程序框图运行程序,直到a的值满足a>100时,输出结果即可.【详解】第一次循环:a=3;第二次循环:a=7;第三次循环:a=15;第四次循环:a=31;第五次循环:a=63;第六次循环:a=127,a>100,所以输出a.所以本题答案为127.【点睛】本题考查根据程序框图中的循环结构计算输出结果的问题,属于基础题.16、【解析】
利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【解析】
将问题转化为解方程和解不等式,以及,分别求解即可.【详解】由题:由得:或;由得:;由得:或,综上所述:当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【点睛】此题考查解二次方程和二次不等式,关键在于熟练掌握二次方程和二次不等式的解法,准确求解.18、(1)证明见解析(2)【解析】
(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)当M为半圆弧CD的中点时,四棱锥的体积最大,此时,过点M作MOCD于点E,平面CDM平面ABCDMO平面ABCD,即MO为四棱锥的高又底面ABCD面积为定值2,AM与CD所成的角即AM与AB所成的角,求得,三角形为正三角形,,故AM与CD所成的角为【点睛】本题主要考查异面直线成的角,面面垂直的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.19、(Ⅰ)几何体为以为半径,高的圆锥,(Ⅱ)【解析】
(Ⅰ)若以为轴,直角三角形旋转一周,形成的几何体为以为半径,高的圆锥,由圆锥的表面积公式,即可求出结果.(Ⅱ)利用侧面展开图,要使蚂蚁爬行的最短距离,则沿点B的母线把圆锥侧面展开为平面图形(如图)最短距离就是点B到点的距离,代入数值,即可求出结果.【详解】解:(Ⅰ)在直角三角形ABC中,由即,得,若以为轴旋转一周,形成的几何体为以为半径,高的圆锥,则,其表面积为.(Ⅱ)由问题(Ⅰ)的圆锥,要使蚂蚁爬行的最短距离,则沿点B的母线把圆锥侧面展开为平面图形(如图)最短距离就是点B到点的距离,,在中,由余弦定理得:【点睛】本题考查了圆锥的表面积以及侧面展开图的应用,考查了学生的空间想象能力,属于基础题.20、(1),,;(2),.【解析】
(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第22课《智取生辰纲》课件2024-2025学年统编版语文九年级上册
- 石河子大学《园艺生态学》2022-2023学年第一学期期末试卷
- 描写下雪前的句子
- 石河子大学《模戳印花布图案与工艺》2022-2023学年第一学期期末试卷
- 石河子大学《程序设计基础》2021-2022学年期末试卷
- 石河子大学《教育统计分析与实验》2023-2024学年第一学期期末试卷
- 沈阳理工大学《模拟电路基础》2022-2023学年期末试卷
- 沈阳理工大学《复变函数与积分变换》2023-2024学年第一学期期末试卷
- 骨灰保管合同案
- 国企入职合同模板
- 校企共建项目合同违约条款
- 中小学教师如何做课题研究设计课件
- 《1.6.1 余弦定理》说课稿
- 急诊医学测试试题及答案
- 2024年广州铁路(集团)公司招聘468人易考易错模拟试题(共500题)试卷后附参考答案
- 第四单元两、三位数除以一位数(单元测试)-2024-2025学年三年级上册数学苏教版
- 2024年保安员证考试题库及答案(共240题)
- 人教版一年级上册数学期末试题及答案
- 浙江省9+1高中联盟2023-2024学年高一上学期11月期中英语试题 含解析
- 2025届高三化学一轮复习 第13讲 铁盐、亚铁盐及其转化 课件
- 【电商企业跨国并购的绩效探析案例:以阿里巴巴并购Lazada为例(论文)14000字】
评论
0/150
提交评论