版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线过且在轴与轴上的截距相等,则的方程为()A. B.C.和 D.2.已知,所在平面内一点P满足,则()A. B. C. D.3.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.4.(2016高考新课标III,理3)已知向量,则ABC=A.30 B.45 C.60 D.1205.将函数(其中)的图象向右平移个单位,若所得图象与原图象重合,则不可能等于()A.0 B. C. D.6.已知a,b为非零实数,且,则下列不等式一定成立的是()A. B. C. D.7.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.208.已知,且,把底数相同的指数函数与对数函数图象的公共点称为(或)的“亮点”.当时,在下列四点,,,中,能成为的“亮点”有()A.0个 B.1个 C.2个 D.3个9.如图,在中,,,若,则()A. B. C. D.10.某数学竞赛小组有3名男同学和2名女同学,现从这5名同学中随机选出2人参加数学竞赛(每人被选到的可能性相同).则选出的2人中恰有1名男同学和1名女同学的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若x、y满足约束条件,则的最大值为________.12.若函数是奇函数,其中,则__________.13.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则________.14._______________。15.已知为钝角,且,则__________.16.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边过点.(1)求的值;(2)已知为锐角,,求的值.18.解关于x的不等式19.某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?20.已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)21.已知函数.(1)求的最小正周期,并求其单调递减区间;(2)的内角,,所对的边分别为,,,若,且为钝角,,求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
对直线是否过原点分类讨论,若直线过原点满足题意,求出方程;若直线不过原点,在轴与轴上的截距相等,且不为0,设直线方程为将点代入,即可求解.【详解】若直线过原点方程为,在轴与轴上的截距均为0,满足题意;若直线过原点,依题意设方程为,代入方程无解.故选:B.【点睛】本题考查直线在上的截距关系,要注意过原点的直线在轴上的截距是轴上的截距的任意倍,属于基础题.2、D【解析】
由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.3、B【解析】
根据函数的对称性得到原题转化为直接求的最大和最小值即可.【详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【点睛】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.4、A【解析】试题分析:由题意,得,所以,故选A.【考点】向量的夹角公式.【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.5、D【解析】由题意,所以,因此,从而,可知不可能等于.6、C【解析】
,时,、、不成立;利用作差比较,即可求出.【详解】解:,时,,,故、、不成立;,,.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.7、D【解析】
根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【点睛】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.8、C【解析】
利用“亮点”的定义对每一个点逐一分析得解.【详解】由题得,,由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”.故选C【点睛】本题主要考查指数和对数的运算,考查指数和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】∵∴又,∴故选B.10、A【解析】
把5名学生编号,然后写出任取2人的所有可能,按要求计数后可得概率.【详解】3名男生编号为,两名女生编号为,任选2人的所有情形为:,,共10种,其中恰有1名男生1名女生的有共6种,所以所求概率为.【点睛】本题考查古典概型,方法是列举法.二、填空题:本大题共6小题,每小题5分,共30分。11、18【解析】
先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.12、【解析】
定义域上的奇函数,则【详解】函数是奇函数,所以,又,则所以填【点睛】定义域上的奇函数,我们可以直接搭建方程,若定义域中则不能直接代指.13、【解析】
由题意得出,结合诱导公式,二倍角公式求解即可.【详解】,则角的终边可能在第一、二象限由图可知,无论角的终边在第一象限还是第二象限,都有故答案为:【点睛】本题主要考查了利用二倍角的余弦公式以及诱导公式化简求值,属于基础题.14、【解析】
本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【详解】,故答案为【点睛】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。15、.【解析】
利用同角三角函数的基本关系即可求解.【详解】由为钝角,且,所以,所以.故答案为:【点睛】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.16、【解析】
假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用三角函数的定义可求出,再根据二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函数的基本关系可得,由,利用两角差的正切公式即可求解.【详解】解:(1)依题意得,,,所以.(2)由(1)得,,故.因为,,,所以,又因为,所以,.所以,所以.【点睛】本小题主要考查同角三角函数关系、三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想等.18、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.19、(1);(2)当月产量为8百台时,公司所获利润最大,最大利润为万元.【解析】
(1)由题可得成本函数G(x)=4+,通过f(x)=R(x)-G(x)得到解析式;(2)当x>10时,当0≤x≤10时,分别求解函数的最大值即可.【详解】(1)由条件知成本函数G(x)=4+可得(2)当时,,当时,的最大值为万元;当时,万元,综上所述,当月产量为8百台时,公司所获利润最大,最大利润为万元.【点睛】本题考查实际问题的应用,分段函数的应用,函数的最大值的求法,考查转化思想以及计算能力.20、(1);(2);【解析】
(1)运用数列的递推式得时,,时,,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【详解】(1)可得时,则(2)数列满足,可得,即,前项和两式相减可得化简可得【点睛】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题.21、(1)最小正周期;单调递减区间为;(2)【解析】
(1)利用二倍角和辅助角公式可化简函数为;利用可求得最小正周期;令解出的范围即可得到单调递减区间;(2)由可得,根据的范围可求出的取值;利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络直播合作协议签约管理办法
- 民俗别墅租赁协议
- 剧院常年舞蹈演员招聘合同
- 城市照明挖掘机租赁协议
- 宾馆物业维修人员招聘协议
- 文化遗产翻新施工合同
- 文化场地地暖施工合同模板
- 商场暖气管道安装工程施工合同
- 翻译兼职聘用合同
- 投资合作协议书
- 概率论与数理统计知到智慧树章节测试课后答案2024年秋中国农业大学
- 2024年广西职业院校技能大赛高职组《供应链管理》赛项样题-供应链规划设计
- 商城系统定制开发(2024版)合同3篇
- 城市基建竖井施工风险管理方案
- 农村宅基地使用证更名协议书(2篇)
- 小儿咳嗽推拿治疗
- 代理记账员工培训
- 2024年全国保密知识竞赛经典试题库附参考答案(综合题)
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 部编版2023-2024学年六年级上册语文期末测试试卷(含答案)
- 八上必读名著《红星照耀中国》要点梳理与练习
评论
0/150
提交评论