2023年安徽省合肥市第一六八中学数学高一下期末综合测试模拟试题含解析_第1页
2023年安徽省合肥市第一六八中学数学高一下期末综合测试模拟试题含解析_第2页
2023年安徽省合肥市第一六八中学数学高一下期末综合测试模拟试题含解析_第3页
2023年安徽省合肥市第一六八中学数学高一下期末综合测试模拟试题含解析_第4页
2023年安徽省合肥市第一六八中学数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列的通项公式,则()A. B. C.或 D.不存在2.右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.3.已知等比数列{an}中,a3•a13=20,a6=4,则a10的值是()A.16 B.14 C.6 D.54.表示不超过的最大整数,设函数,则函数的值域为()A. B. C. D.5.在计算机BASIC语言中,函数表示整数a被整数b除所得的余数,如.用下面的程序框图,如果输入的,,那么输出的结果是()A.7 B.21 C.35 D.496.若偶函数在上是增函数,则()A. B.C. D.不能确定7.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定8.为了从甲、乙两组中选一组参加“喜迎国庆共建小康”知识竞赛活动.班主任老师将两组最近的次测试的成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是.则下列说法正确的是()A.,乙组比甲组成绩稳定,应选乙组参加比赛B.,甲组比乙组成绩稳定.应选甲组参加比赛C.,甲组比乙组成绩稳定.应选甲组参加比赛D.,乙组比甲组成绩稳定,应选乙组参加比赛9.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯.这首古诗描述的浮屠,现称宝塔.本浮屠增级歌意思是:有一座7层宝塔,每层悬挂的红灯数是上一层的2倍,宝塔中共有灯381盏,问这个宝塔第3层灯的盏数有()A. B. C. D.10.在中,若,,,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆截直线所得线段的长度是,则圆M与圆的位置关系是_________.12.函数,的递增区间为______.13.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=214.在公比为q的正项等比数列{an}中,a3=9,则当3a2+a4取得最小值时,=_____.15.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.16.方程组对应的增广矩阵为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,求的值.18.某超市为了解端午节期间粽子的销售量,对其所在销售范围内的1000名消费者在端午节期间的粽子购买量(单位:g)进行了问卷调查,得到如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值;(Ⅱ)求这1000名消费者的棕子购买量在600g~1400g的人数;(Ⅲ)求这1000名消费者的人均粽子购买量(频率分布直方图中同一组的数据用该组区间的中点值作代表).19.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.20.已知圆,直线.圆与轴交于两点,是圆上不同于的一动点,所在直线分别与交于.(1)当时,求以为直径的圆的方程;(2)证明:以为直径的圆截轴所得弦长为定值.21.智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从名手机使用者中随机抽取名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是:,.(1)根据频率分布直方图,估计这名手机使用者中使用时间的中位数是多少分钟?(精确到整数)(2)估计手机使用者平均每天使用手机多少分钟?(同一组中的数据以这组数据所在区间中点的值作代表)(3)在抽取的名手机使用者中在和中按比例分别抽取人和人组成研究小组,然后再从研究小组中选出名组长.求这名组长分别选自和的概率是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

因为趋于无穷大,故,分离常数即可得出极限.【详解】解:因为的通项公式,要求,即求故选:B【点睛】本题考查数列的极限,解答的关键是消去趋于无穷大的式子.2、D【解析】

由三视图可知,该几何体为棱长为2的正方体截去一个三棱锥,由正方体的体积减去三棱锥的体积求解.【详解】根据三视图,可知原几何体如下图所示,该几何体为棱长为的正方体截去一个三棱锥,则该几何体的体积为.故选:D.【点睛】本题考查了几何体三视图的应用问题以及几何体体积的求法,关键是根据三视图还原原来的空间几何体,是中档题.3、D【解析】

用等比数列的性质求解.【详解】∵是等比数列,∴,∴.故选D.【点睛】本题考查等比数列的性质,灵活运用等比数列的性质可以很快速地求解等比数列的问题.在等比数列中,正整数满足,则,特别地若,则.4、D【解析】

由已知可证是奇函数,是互为相反数,对是否为正数分类讨论,即可求解.【详解】的定义域为,,,是奇函数,设,若是整数,则,若不是整数,则.的值域是.故选:D.【点睛】本题考查函数性质的应用,考查对新函数定义的理解,考查分类讨论思想,属于中档题.5、B【解析】

模拟执行循环体,即可得到输出值.【详解】,,,,继续执行得,,继续执行得,,结束循环,输出.故选:B.【点睛】本题考查循环体的执行,属程序框图基础题.6、B【解析】

根据偶函数性质与幂函数性质可得.【详解】偶函数在上是增函数,则它在上是减函数,所以.故选:B.【点睛】本题考查幂函数的性质,考查偶函数性质,属于基础题.7、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.8、D【解析】

由茎叶图数据分别计算两组的平均数;根据数据分布特点可知乙组成绩更稳定;由平均数和稳定性可知应选乙组参赛.【详解】;乙组的数据集中在平均数附近乙组成绩更稳定应选乙组参加比赛本题正确选项:【点睛】本题考查茎叶图的相关知识,涉及到平均数的计算、数据稳定性的估计等知识,属于基础题.9、C【解析】

先根据等比数列的求和公式求出首项,再根据通项公式求解.【详解】从第1层到塔顶第7层,每层的灯数构成一个等比数列,公比为,前7项的和为381,则,得第一层,则第三层,故选【点睛】本题考查等比数列的应用,关键在于理解题意.10、A【解析】

利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、相交【解析】

根据直线与圆相交的弦长公式,求出的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为,则圆心为,半径,圆心到直线的距离,圆截直线所得线段的长度是,即,,则圆心为,半径,圆的圆心为,半径,则,,,,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出的值是解决本题的关键.12、[0,](开区间也行)【解析】

根据正弦函数的单调递增区间,以及题中条件,即可求出结果.【详解】由得:,又,所以函数,的递增区间为.故答案为【点睛】本题主要考查正弦型函数的单调区间,熟记正弦函数的单调区间即可,属于常考题型.13、32或【解析】

由余弦定理求出c,再利用面积公式即可得到答案。【详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【点睛】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。14、【解析】

利用等比数列的性质,结合基本不等式等号成立的条件,求得公比,由此求得的值.【详解】∵在公比为q的正项等比数列{an}中,a3=9,根据等比数列的性质和基本不等式得,当且仅当,即,即q时,3a2+a4取得最小值,∴log3q=log3.故答案为:【点睛】本小题主要考查等比数列的性质,考查基本不等式的运用,属于基础题.15、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为16、【解析】

根据增广矩阵的概念求解即可.【详解】方程组对应的增广矩阵为,故答案为:.【点睛】本题考查增广矩阵的概念,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、3【解析】

利用两角和的正切公式化简,求得的值,根据诱导公式求得的值.【详解】由得.将代入上式,得,解得.于是,所以.【点睛】本小题主要考查两角和的正切公式、诱导公式,属于基础题.18、(Ⅰ)a=0.1(Ⅱ)2(Ⅲ)1208g【解析】

(Ⅰ)由频率分布直方图的性质,列出方程,即可求解得值;(Ⅱ)先求出粽子购买量在的频率,由此能求出这1000名消费者的粽子购买量在的人数;(Ⅲ)由频率分布直方图能求出1000名消费者的人均购买粽子购买量【详解】(Ⅰ)由频率分布直方图的性质,可得(0.0002+0.00055+a+0.0005+0.00025)×400=1,解得a=0.1.(Ⅱ)∵粽子购买量在600g~1400g的频率为:(0.00055+0.1)×400=0.62,∴这1000名消费者的棕子购买量在600g~1400g的人数为:0.62×1000=2.(Ⅲ)由频率分布直方图得这1000名消费者的人均粽子购买量为:(400×0.0002+800×0.00055+1200×0.1+1600×0.0005+2000×0.00025)×400=1208g.【点睛】本题主要考查了频率、频数、以及频率分布直方图的应用,其中解答中熟记频率分布直方图的性质是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.19、(1)(2)3;(3)【解析】

(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,,故当时,原不等式恒成立.【点睛】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.20、(1);(2)证明见解析.【解析】

(1)讨论点的位置,根据直线的方程,直线的方程分别与直线方程联立,得出的坐标,进而得出圆心坐标以及半径,即可得出该圆的方程;(2)讨论点的位置,根据直角三角形的边角关系得出的坐标,进而得出圆心坐标以及半径,再由圆的弦长公式化简即可证明.【详解】(1)由圆的方程可知,①当点在第一象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为②当点在第四象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为综上,以为直径的圆的方程为(2)①当点在圆上半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为②当点在圆下半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为综上,以为直径的圆截轴所得弦长为定值.【点睛】本题主要考查了求圆的方程以及圆的弦长公式的应用,属于中档题.21、(1)分钟.(2)58分钟;(3)【解析】

(1)根据中位数将频率二等分可直接求得结果;(2)每组数据中间值与对应小矩形的面积乘积的总和即为平均数;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论