版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量的夹角为,且,则()A. B. C. D.2.已知全集则()A. B. C. D.3.若存在正实数,使得,则()A.实数的最大值为 B.实数的最小值为C.实数的最大值为 D.实数的最小值为4.数列{an}中a1=﹣2,an+1=1,则a2019的值为()A.﹣2 B. C. D.5.在中,角、、所对的边分别为、、,若,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形6.一个球自高为米的地方自由下落,每次着地后回弹高度为原来的,到球停在地面上为止,球经过的路程总和为()米A. B. C. D.7.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x99.5m10.511销售量y11n865由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是y=-3.2x+40,且m+n=20,则其中的n=A.10 B.11 C.12 D.10.58.函数的定义域是().A. B. C. D.9.在公比为2的等比数列中,,则等于()A.4 B.8 C.12 D.2410.直线的倾斜角是()A.30° B.60° C.120° D.135°二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.12.已知数列的前项和,那么数列的通项公式为__________.13.在数列中,,,若,则的前项和取得最大值时的值为__________.14.关于的方程只有一个实数根,则实数_____.15.已知向量,满足,且在方向上的投影是,则实数_______.16.已知曲线与直线交于A,B两点,若直线OA,OB的倾斜角分别为、,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,为坐标原点,已知向量,又点,,,.(1)若,且,求向量;(2)若向量与向量共线,常数,求的值域.18.已知向量=,=,=,为坐标原点.(1)若△为直角三角形,且∠为直角,求实数的值;(2)若点、、能构成三角形,求实数应满足的条件.19.正四面体是侧棱与底面边长都相等的正三棱锥,它的对棱互相垂直.有一个如图所示的正四面体,E,F,G分别是棱AB,BC,CD的中点.(1)求证:面EFG;(2)求异面直线EG与AC所成角的大小.20.在△中,所对的边分别为,,.(1)求;(2)若,求,,.21.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
将模平方后利用数量积的定义计算其结果,然后开根号得出的值.【详解】,因此,,故选B.【点睛】本题考查利用平面向量的数量积来求平面向量的模,通常利用平方法结合平面向量数量积的定义来进行求解,考查计算能力,属于中等题.2、B【解析】
先求M的补集,再与N求交集.【详解】∵全集U={0,1,2,3,4},M={0,1,2},∴∁UM={3,4}.∵N={2,3},∴(∁UM)∩N={3}.故选:B.【点睛】本题考查了交、并、补集的混合运算,是基础题.3、C【解析】
将题目所给方程转化为关于的一元二次方程,根据此方程在上有解列不等式组,解不等式组求得的取值范围,进而求出正确选项.【详解】由得,当时,方程为不和题意,故这是关于的一元二次方程,依题意可知,该方程在上有解,注意到,所以由解得,故实数的最大值为,所以选C.【点睛】本小题主要考查一元二次方程根的分布问题,考查化归与转化的数学思想方法,属于中档题.4、B【解析】
根据递推公式,算出即可观察出数列的周期为3,根据周期即可得结果.【详解】解:由已知得,,,
,…,,
所以数列是以3为周期的周期数列,故,
故选:B.【点睛】本题考查递推数列的直接应用,难度较易.5、B【解析】
利用正弦定理得到答案.【详解】故答案为B【点睛】本题考查了正弦定理,意在考查学生的计算能力.6、D【解析】
设球第次到第次着地这一过程中球经过的路程为米,可知数列是以为首项,以为公比的等比数列,由此可得出球经过的路程总和为米.【详解】设球第次到第次着地这一过程中球经过的路程为米,则,由题意可知,数列是以为首项,以为公比的等比数列,因此,球经过的路程总和米.故选:D.【点睛】本题考查等比数列的实际应用,涉及到无穷等比数列求和问题,考查计算能力,属于中等题.7、A【解析】
由表求得x,y,代入回归直线方程16m+5n=210,联立方程组,即可求解,得到答案.【详解】由题意,5家商场的售价x元和销售量y件之间的一组数据,可得x=9+9.5+m+10.5+115又由回归直线的方程y=-3.2x+40,则30+n5=-3.2×又因为m+n=20,解得m=10,n=10,故选A.【点睛】本题主要考查了回归直线方程的特征及其应用,其中解答中熟记回归直线方程的特征,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.9、D【解析】
由等比数列的性质可得,可求出,则答案可求解.【详解】等比数列的公比为2,由,即,所以舍所以故选:D【点睛】本题考查等比数列的性质和通项公式的应用,属于基础题.10、C【解析】
根据直线方程求出斜率即可得到倾斜角.【详解】由题:直线的斜率为,所以倾斜角为120°.故选:C【点睛】此题考查根据直线方程求倾斜角,需要熟练掌握直线倾斜角与斜率的关系,熟记常见特殊角的三角函数值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.12、【解析】
运用数列的递推式即可得到数列通项公式.【详解】数列的前项和,当时,得;当时,;综上可得故答案为:【点睛】本题考查数列的通项与前项和的关系,考查分类讨论思想的运用,求解时要注意把通项公式写成分段的形式.13、【解析】
解法一:利用数列的递推公式,化简得,得到数列为等差数列,求得数列的通项公式,得到,,得出所以,,,,进而得到结论;解法二:化简得,令,求得,进而求得,再由,解得或,即可得到结论.【详解】解法一:因为①所以②,①②,得即,所以数列为等差数列.在①中,取,得即,又,则,所以.因此,所以,,,所以,又,所以时,取得最大值.解法二:由,得,令,则,则,即,代入得,取,得,解得,又,则,故所以,于是.由,得,解得或,又因为,,所以时,取得最大值.【点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.14、【解析】
首先从方程看是不能直接解出这个方程的根的,因此可以转化成函数,从函数的奇偶性出发。【详解】设,则∴为偶函数,其图象关于轴对称,又依题意只有一个零点,故此零点只能是,所以,∴,∴,∴,∴,故答案为:【点睛】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。15、1【解析】
在方向上的投影为,把向量坐标代入公式,构造出关于的方程,求得.【详解】因为,所以,解得:,故填:.【点睛】本题考查向量的数量积定义中投影的概念、及向量数量积的坐标运算,考查基本运算能力.16、【解析】
曲线即圆曲线的上半部分,因为圆是单位圆,所以,,,,联立曲线与直线方程,消元后根据韦达定理与直线方程代入即可求解.【详解】由消去得,则,由三角函数的定义得故.【点睛】本题主要考查三角函数的定义,直线与圆的应用.此题关键在于曲线的识别与三角函数定义的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)当时的值域为.时的值域为.【解析】分析:(1)由已知表示出向量,再根据,且,建立方程组求出,即可求得向量;(2)由已知表示出向量,结合向量与向量共线,常数,建立的表达式,代入,对分类讨论,综合三角函数和二次函数的图象与性质,即可求出值域.详解:(1),∵,且,∴,,解得,时,;时,.∴向量或.(2),∵向量与向量共线,常数,∴,∴.①当即时,当时,取得最大值,时,取得最小值,此时函数的值域为.②当即时,当时,取得最大值,时,取得最小值,此时函数的值域为.综上所述,当时的值域为.时的值域为.点睛:本题考查了向量的坐标运算、向量垂直和共线的定理、模的计算、三角函数的值域等问题,考查了分类讨论方法、推理与计算能力.18、(1);(2)【解析】
(1)利用向量的运算法则求出,,再利用向量垂直的充要条件列出方程求出m;(2)由题意得A,B,C三点不共线,则与不共线,列出关于m的不等式即可.【详解】(1)因为=,=,=,所以,,若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0,解得.(2)若点A,B,C能构成三角形,则这三点不共线,即与不共线,得3(1﹣m)≠2﹣m,∴实数时,满足条件.【点睛】本题考查向量垂直、向量共线的充要条件、利用向量共线解决三点共线、三点不共线等问题,属于基础题.19、(1)证明见解析;(2)【解析】
(1)连接EF,FG,GE,通过三角形的中位线可得,进而可得面EFG;(2)由题可得为异面直线EG与AC所成角,根据正四棱锥的特点得到为等腰直角三角形,进而可得结果.【详解】解:(1)连接EF,FG,GE,如图,E,F分别是棱AB,BC的中点,,又面EFG,面EFG,面EFG;(2)由(1),则为异面直线EG与AC所成角,AC与BD是正四面体的对棱,,又,,又,为等腰直角三角形,,即异面直线EG与AC所成角的大小为.【点睛】本题考查线面平行的证明,以及异面直线所成的角,通过直线平行找到异面直线所成角的平面角是关键,本题难度不大.20、(1)(2)【解析】(1)由得则有=得即.(2)由推出;而,即得,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版大棚建筑设计与施工环保评价合同3篇
- 二零二五年度最高额贷款合同2篇
- 二零二五年度车辆承包经营与智能驾驶技术研发合同3篇
- 二零二五年度油烟机安装与厨房环境改善合同3篇
- 2025年新材料研发项目投资担保借款合同3篇
- 二零二五版食品冷链物流中心冷库设计与设备采购合同3篇
- 二零二五版窗帘成品出口业务承包合同3篇
- 2025年度智能穿戴设备买卖合作协议与健康数据管理合同4篇
- 专门定制字画购买合同书2024版版B版
- 二零二五年度水泥管行业市场调研与分析合同3篇
- 意识障碍患者的护理诊断及措施
- 2024版《53天天练单元归类复习》3年级语文下册(统编RJ)附参考答案
- 2025企业年会盛典
- 215kWh工商业液冷储能电池一体柜用户手册
- 场地平整施工组织设计-(3)模板
- 交通设施设备供货及技术支持方案
- 美容美发店火灾应急预案
- 餐车移动食材配送方案
- 项目工程师年终总结课件
- 一年级口算练习题大全(可直接打印A4)
- 电动车棚消防应急预案
评论
0/150
提交评论