版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调减区间为A.B.C.D.2.设,是定义在上的两个周期函数,的周期为,的周期为,且是奇函数.当时,,,其中.若在区间上,函数有个不同的零点,则的取值范围是()A. B. C. D.3.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5 C.-1 D.-54.如图,,下列等式中成立的是()A. B.C. D.5.设的三个内角成等差数列,其外接圆半径为2,且有,则三角形的面积为()A. B. C.或 D.或6.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示:开业天数1020304050销售额/天(万元)62758189根据上表提供的数据,求得关于的线性回归方程为,由于表中有一个数据模糊看不清,请你推断出该数据的值为()A.68 B.68.3 C.71 D.71.37.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出,则输入m的值为()A.240 B.220 C.280 D.2608.在中,角,,所对的边分别为,,,且边上的高为,则的最大值是()A.8 B.6 C. D.49.若函数的图象可由函数的图象向右平移个单位长度变换得到,则的解析式是()A. B.C. D.10.圆心为且过原点的圆的一般方程是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,点的坐标为,则点的坐标为.12.设,向量,,若,则__________.13.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.14.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.15.用秦九韶算法求多项式当时的值的过程中:,__.16.已知向量,且,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.18.已知函数.(1)求的单调增区间;(2)求的图像的对称中心与对称轴.19.如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.20.在中,已知,,且,求.21.已知函数f(x)=sinωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为.(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据正弦函数的单调递减区间,列出不等式求解,即可得出结果.【详解】的单调减区间为,,解得函数的单调减区间为.故选A.【点睛】本题主要考查三角函数的单调性,熟记正弦函数的单调区间即可,属于常考题型.2、B【解析】
根据题意可知,函数和在上的图象有个不同的交点,作出两函数图象,即可数形结合求出.【详解】作出两函数的图象,如图所示:由图可知,函数和在上的图象有个不同的交点,故函数和在上的图象有个不同的交点,才可以满足题意.所以,圆心到直线的距离为,解得,因为两点连线斜率为,所以,.故选:B.【点睛】本题主要考查了分段函数的图象应用,函数性质的应用,函数的零点个数与两函数图象之间的交点个数关系的应用,意在考查学生的转化能力和数形结合能力,属于中档题.3、D【解析】∵过两点A(4,y),B(2,-3)的直线的倾斜角是135°,∴,解得。选D。4、B【解析】
本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案.【详解】因为,所以,所以,即,故选B.【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题.5、C【解析】
的三个内角成等差数列,可得角A、C的关系,将已知条件中角C消去,利用三角函数和差角公式展开即可求出角A的值,再由三角形面积公式即可求得三角形面积.【详解】的三个内角成等差数列,则,解得,所以,所以,整理得,则或,因为,解得或.①当时,;②当时,,故选C.【点睛】本题考查了三角形内角和定理、等差数列性质、三角函数和差角公式、三角函数辅助角公式,综合性较强,属于中档题;解题中主要是通过消元构造关于角A的三角方程,其中利用三角函数和差角公式和辅助角公式对式子进行化解是解题的关键.6、A【解析】
根据表中数据计算,再代入线性回归方程求得,进而根据平均数的定义求出所求的数据.【详解】根据表中数据,可得,代入线性回归方程中,求得,则表中模糊不清的数据是,故选:B.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.7、A【解析】
根据程序框图,依次循环计算,可得输出的表达式.结合,由等比数列求和公式,即可求得的值.【详解】由程序框图可知,此时输出.所以即由等比数列前n项和公式可得解得故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.8、D【解析】,这个形式很容易联想到余弦定理:cosA,①而条件中的“高”容易联想到面积,bcsinA,即a2=2bcsinA,②将②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),当A=时取得最大值4,故选D.点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9、A【解析】
先化简函数,然后再根据图象平移得.【详解】由已知,∴.故选A.【点睛】本题考查两角和的正弦公式,考查三角函数的图象平移变换,属于基础题.10、D【解析】
根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:设,则有,所以,解得,所以.考点:平面向量的坐标运算.12、【解析】从题设可得,即,应填答案.13、1【解析】
由,解得,经过验证即可得出.【详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.14、【解析】
由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.15、1【解析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.16、-7【解析】
,利用列方程求解即可.【详解】,且,,解得:.【点睛】考查向量加法、数量积的坐标运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(1)见解析【解析】
(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消求和,化简运算能力,属于中档题.18、(1);(2)对称中心,;对称轴为【解析】
利用诱导公式可将函数化为;(1)令,求得的范围即为所求单调增区间;(2)令,求得即为对称中心横坐标,进而得到对称中心;令,求得即为对称轴.【详解】(1)令,,解得:,的单调递增区间为(2)令,,解得:,的对称中心为,令,,解得:,的对称轴为【点睛】本题考查正弦型函数单调区间、对称轴和对称中心的求解,涉及到诱导公式化简函数的问题;关键是能够熟练掌握整体对应的方式,结合正弦函数的性质来求解单调区间、对称轴和对称中心.19、(1)见解析;(2)见解析.【解析】试题分析:(1)设,连接,因为O,E分别为AC,中点,所以(2)平面,所以平面平面考点:线面平行垂直的判定点评:平面内一直线与平面外一直线平行,则线面平行;直线垂直于平面内两相交直线则直线垂直于平面,进而得到两面垂直20、或【解析】
首先根据三角形面积公式求出角B的正弦值,然后利用平方关系,求出余弦值,再依据余弦定理即可求出.【详解】由得,,所以或,由余弦定理有,,故或,即或.【点睛】本题主要考三角形面积公式、同角三角函数基本关系的应用,以及利用余弦定理解三角形.21、(1)f(x)=sin.(2)【解析】试题分析:(1)先利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海科创职业技术学院《可编程控制技术(PC)课程设计》2023-2024学年第一学期期末试卷
- 上海健康医学院《造价管理实务》2023-2024学年第一学期期末试卷
- 宠物店管理系统
- 上海济光职业技术学院《版式与书籍设计》2023-2024学年第一学期期末试卷
- 上海健康医学院《美容与化妆品化学》2023-2024学年第一学期期末试卷
- 上海海洋大学《大数据开发与应用》2023-2024学年第一学期期末试卷
- 上海海事大学《思想政治教育原理》2023-2024学年第一学期期末试卷
- 上海海关学院《项目管理案例分析》2023-2024学年第一学期期末试卷
- 教材审核材料报告范文
- 选择专项08(实验探究与设计30题)原卷版-2024年中考化学常考点专题必杀题(深圳专用)选择题专项
- 安全隐患排查工作方案(汽修厂)
- 市场营销学每章习题集
- KPI 统计和趋势图分析
- 谭浩强经典教材《C语言程序设计》课件_电子版
- 最新建筑材料标准以及分类
- 产品质量控制流程图
- 民间疗法—敷脐
- 教科研基地汇报材料
- 质量等级说明
- 消防工程防排烟及通风施工工艺方法
- 国民经济行业与分类代码
评论
0/150
提交评论