版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值2.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.463.中,,则()A. B. C.或 D.4.若直线经过点,则此直线的倾斜角是()A. B. C. D.5.若向量,,则点B的坐标为()A. B. C. D.6.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形7.数列满足,则数列的前项和等于()A. B. C. D.8.已知的三个顶点都在一个球面上,,且该球的球心到平面的距离为2,则该球的表面积为()A. B. C. D.9.一个不透明袋中装有大小、质地完成相同的四个球,四个球上分别标有数字2,3,4,6,现从中随机选取三个球,则所选三个球上的数字能构成等差数列(如:、、成等差数列,满足)的概率是()A. B. C. D.10.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角的对边分别为,且面积为,则面积的最大值为_____.12.(如下图)在正方形中,为边中点,若,则__________.13.设为,的反函数,则的值域为______.14.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为100且支出在元的样本,其频率分布直方图如图,则支出在元的同学人数为________15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.16.若点,是圆C:上不同的两点,且,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l过点(1,3),且在y轴上的截距为1.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+(y+a)2=5相切,求实数a的值.18.(1)已知,,且、都是第二象限角,求的值.(2)求证:.19.在中,角A,B,C的对边分别是a,b,c,.(1)求角A的大小;(2)若,,求的面积.20.已知正方形的中心为,一条边所在直线的方程是.(1)求该正方形中与直线平行的另一边所在直线的方程;(2)求该正方形中与直线垂直的一边所在直线的方程.21.已知函数,(1)求的值;(2)求的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.2、A【解析】
模拟程序运行即可.【详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【点睛】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.3、A【解析】
根据正弦定理,可得,然后根据大边对大角,可得结果..【详解】由,所以由,所以故,所以故选:A【点睛】本题考查正弦定理的应用,属基础题.4、D【解析】
先通过求出两点的斜率,再通过求出倾斜角的值。【详解】,选D.【点睛】先通过求出两点的斜率,再通过求出倾斜角的值。需要注意的是斜率不存在的情况。5、B【解析】
根据向量的坐标运算得到,得到答案.【详解】,故.故选:.【点睛】本题考查了向量的坐标运算,意在考查学生的计算能力.6、A【解析】
根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【点睛】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.7、A【解析】
当为正奇数时,可推出,当为正偶数时,可推出,将该数列的前项和表示为,结合前面的规律可计算出数列的前项和.【详解】当为正奇数时,由题意可得,,两式相减得;当为正偶数时,由题意可得,,两式相加得.因此,数列的前项和为.故选:A.【点睛】本题考查数列求和,找出数列的规律是解题的关键,考查推理能力,属于中等题.8、C【解析】
先算出的外接圆的半径,然后根据勾股定理可得球的半径,由此即可得到本题答案.【详解】设点O为球心,因为,所以的外接圆的圆心为AC的中点M,且半径,又因为该球的球心到平面的距离为2,即,在中,,所以该球的半径为,则该球的表面积为.故选:C【点睛】本题主要考查球的表面积的相关问题.9、B【解析】
用列举法写出所有基本事件,确定成等差数列含有的基本事件,计数后可得概率.【详解】任取3球,结果有234,236,246,346共4种,其中234,246是成等差数列的2个基本事件,∴所求概率为.故选:B.【点睛】本题考查古典概型,解题时可用列举法列出所有的基本事件.10、A【解析】
在空间直角坐标系中,点关于轴对称的点的坐标为.【详解】根据对称性,点关于轴对称的点的坐标为.故选A.【点睛】本题考查空间直角坐标系和点的对称,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.12、【解析】∵,根据向量加法的三角形法则,得到∴λ=1,.则λ+μ=.故答案为.点睛:此题考查的是向量的基本定理及其分解,由条件知道,题目中要用和,来表示未知向量,故题目中要通过正方形的边长和它特殊的直角,来做基底,表示出要求的向量,根据平面向量基本定理,系数具有惟一性,得到结果.13、【解析】
求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.14、30【解析】
由频率分布直方图求出支出在元的概率,由此能力求出支出在元的同学的人数,得到答案.【详解】由频率分布直方图,可得支出在元的概率,,所以支出在元的同学的人数为人.【点睛】本题主要考查了频率分布直方图的应用,以及概率的计算,其中解答中熟记频率分布直方图的性质,合理求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.15、92【解析】
由题可得,进而可得,再计算出,从而得出答案.【详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数,解题的关键是求出,属于一般题.16、【解析】
由,再结合坐标运算即可得解.【详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【点睛】本题考查了向量模的运算,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)y=2x+1;(2)a=-2或【解析】
(1)求得直线的斜率,再由点斜式方程可得所求直线方程;(2)运用直线和圆相切的条件,即圆心到直线的距离等于半径,解方程可得所求值.【详解】(1)直线l过点(1,3),且在y轴上的截距为1,可得直线l的斜率为=2,则直线l的方程为y3=2(x1),即y=2x+1;
(2)若直线l与圆C:(xa)2+(y+a)2=5相切,
可得圆心(a,a)到直线l的距离为,即有
=,解得a=2或.【点睛】本题考查直线方程和圆方程的运用,考查直线和圆相切的条件,考查方程思想和运算能力,属于基础题.18、(1);(2)见解析【解析】
(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.19、(1)(2)【解析】
(1)由,结合,得到求解.(2)据(1)知.再由余弦定理求得边,再利用求解.【详解】(1)因为,,所以,所以,所以,或(舍去).又因为,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面积.【点睛】本题主要考查了余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.20、(1);(2)或.【解析】
(1)由直线平行则斜率相等,设出所求直线方程,利用M点到两直线距离相等求解;(2)由直线垂直则斜率乘积为-1,设出所求直线,利用M点到两直线距离相等求解.【详解】(1)设与直线平行的另一边所在直线方程为,则,解得,或(舍).所以与直线平行的正方形的另一边所在直线的方程为.(2)设与直线垂直的正方形的边所在直线方程为,则,解得,或.所以与直线垂直的正方形的边所在的直线方程为或.【点睛】本题考查直线平行或垂直与斜率的关系,以及点到直线的距离公式,属直线方程求解基础题.21、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年知名旅游景点开发与运营管理合同
- 生物技术产品生产工人施工协议
- 校医心理健康教育合同
- 市场合作协议
- 太阳能板抵押合同融资租赁合同
- 美容师业务拓展合同样本
- 地下工程脚手架施工分包合同
- 太阳能发电机械费施工合同
- 地下污水管道深基坑施工合同
- 银行柜员及信贷人员招聘合同
- 七人学生小品《如此课堂》剧本台词手稿
- 出境竹木草制品公司不合格产品召回制度
- POWERPOINT教学案例优秀6篇
- RFJ05-2009-DQ人民防空工程电气大样图集
- 建筑物理课后习题参考
- 部编版道德与法治三年级下册第一单元《我和我的同伴》大单元作业设计案例
- 2023届四省联考“谚语看似矛盾”的作文讲评+课件
- 研一考试文件内科学进展习题
- 12YJ9-1 室外工程标准图集
- GB/T 14491-2015工业用环氧丙烷
- 2023年高中物理学史归纳
评论
0/150
提交评论