版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为()A. B.C. D.2.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为()A.2 B.3 C.4 D.63.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元4.某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为()A.10 B.20 C.40 D.605.从3位男运动员和4位女运动员中选派3人参加记者招待会,至少有1位男运动员和1位女运动员的选法有()种A. B. C. D.6.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.27.在ΔABC中,如果A=45∘,c=6,A.无解 B.一解 C.两解 D.无穷多解8.已知实数满足且,则下列选项中不一定成立的是()A. B. C. D.9.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.410.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③相等的角在直观图中仍然相等;④正方形的直观图是正方形.以上结论正确的是()A.①② B.① C.③④ D.①②③④二、填空题:本大题共6小题,每小题5分,共30分。11.________12.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.13.若点为圆的弦的中点,则弦所在的直线的方程为___________.14.若在区间(且)上至少含有30个零点,则的最小值为_____.15.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第一象限的概率为__________.16.已知正实数x,y满足,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份
2010
2011
2012
2013
2014
时间代号
1
2
3
4
5
储蓄存款(千亿元)
5
6
7
8
10
(Ⅰ)求y关于t的回归方程(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中18.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.19.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.20.解关于x的不等式21.某质检机构检测某产品的质量是否合格,在甲、乙两厂匀速运行的自动包装传送带上每隔10分钟抽一包产品,称其质量(单位:克),分别记录抽查数据,获得质量数据茎叶图(如图).(1)该质检机构采用了哪种抽样方法抽取的产品?根据样本数据,求甲、乙两厂产品质量的平均数和中位数;(2)若从甲厂6件样品中随机抽取两件.①列举出所有可能的抽取结果;②记它们的质量分别是克,克,求的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.2、B【解析】
由数列为等比数列,则,结合题意即可得解.【详解】解:因为数列为等比数列,设等比数列的公比为,则,又是奇数项之和的3倍,则,故选:B.【点睛】本题考查了等比数列的性质,重点考查了等比数列公比的运算,属基础题.3、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.4、C【解析】
由频率分布直方图求出这1000名学生中成绩在130分以上的频率,由此能求出这1000名学生中成绩在130分以上的人数.【详解】由频率分布直方图得这1000名学生中成绩在130分以上的频率为:,则这1000名学生中成绩在130分以上的人数为人.故选:.【点睛】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.5、C【解析】
利用分类原理,选出的3人中,有1男2女,有2男1女,两种情况相加得到选法总数.【详解】(1)3人中有1男2女,即;(2)3人中有2男1女,即;所以选法总数为,故选C.【点睛】分类加法原理和分步乘法原理进行计算时,要注意分类的标准,不出现重复或遗漏情况,本题若是按先选1个男的,再选1个女的,最后从剩下的5人中选1人,则会出现重复现象.6、C【解析】试题分析:设样本中线点为,其中,即样本中心点为,因为回归直线必过样本中心点,将代入四个选项只有B,C成立,画出散点图分析可知两个变量x,y之间正相关,故C正确.考点:回归直线方程7、C【解析】
计算出csinA的值,然后比较a、csin【详解】由题意得csinA=6×2【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形解的个数的判断条件,考查分析问题和解决问题的能力,属于中等题.8、D【解析】
由题设条件可以得到,从而可判断A,B中的不等式都是正确的,再把题设变形后可得,从而C中的不等式也是成立的,当,D中的不等式不成立,而时,它又是成立的,故可得正确选项.【详解】因为且,故,所以,故A正确;又,故,故B正确;而,故,故C正确;当时,,当时,有,故不一定成立,综上,选D.【点睛】本题考查不等式的性质,属于基础题.9、D【解析】
由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.10、A【解析】
由直观图的画法和相关性质,逐一进行判断即可.【详解】斜二侧画法会使直观图中的角度不同,也会使得沿垂直于水平线方向的长度与原图不同,而多边形的边数不会改变,同时平行直线之间的位置关系依旧保持平行,故:①②正确,③和④不对,因为角度会发生改变.故选:A.【点睛】本题考查斜二侧画法的相关性质,注意角度是发生改变的,这是易错点.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据极限的运算法则,合理化简、运算,即可求解.【详解】由极限的运算,可得.故答案为:【点睛】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、192【解析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为13、;【解析】
利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).14、【解析】
首先求出在上的两个零点,再根据周期性算出至少含有30个零点时的值即可【详解】根据,即,故,或,∵在区间(且)上至少含有30个零点,∴不妨假设(此时,),则此时的最小值为,(此时,),∴的最小值为,故答案为:【点睛】本题函数零点个数的判断,解决此类问题通常结合周期、函数图形进行解决。属于难题。15、【解析】
首先求出试验发生包含的事件的取值所有可能的结果,满足条件事件直线不经过第一象限,符合条件的有种结果,根据古典概型概率公式得到结果.【详解】试验发生包含的事件,,得到的取值所有可能的结果有:共种结果,由得,当时,直线不经过第一象限,符合条件的有种结果,所以直线不经过第一象限的概率.故答案为:【点睛】本题是一道古典概型题目,考查了古典概型概率公式,解题的关键是求出列举基本事件,属于基础题.16、4【解析】
将变形为,展开,利用基本不等式求最值.【详解】解:,当时等号成立,又,得,此时等号成立,故答案为:4.【点睛】本题考查基本不等式求最值,特别是掌握“1”的妙用,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),(Ⅱ)千亿元.【解析】试题分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,(Ⅱ)将代入回归方程可预测该地区2015年的人民币储蓄存款.试题解析:(1)列表计算如下i
1
1
5
1
5
2
2
6
4
12
3
3
7
9
21
4
4
8
16
32
5
5
10
25
50
15
36
55
120
这里又从而.故所求回归方程为.(2)将代入回归方程可预测该地区2015年的人民币储蓄存款为考点:线性回归方程.18、(1)或;(2).【解析】
(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可.【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力.19、(1);(2)【解析】
(1)根据平面向量的数量积公式计算的值;(2)根据两向量垂直数量积为0,列方程求出cosθ的值和对应角θ的值.【详解】(1)因为,所以(2)因为与垂直,所以即,所以又,所以【点睛】本题考查了平面向量的数量积与模长和夹角的计算问题,是基础题.20、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.21、(1)系统抽样;乙厂产品质量的平均数,乙厂质量的中位数是113;甲厂质量的平均数,甲厂质量的中位数是113(2)①详见解析②【解析】
(1)根据抽样方式即可确定抽样方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高档住宅区物业服务合同3篇
- 2024版家居装饰分期付款合同3篇
- 二零二五年度房屋租赁权转租转让方合同3篇
- 2025年度文化旅游开发商购房合同3篇
- 2025年度国际贸易合同变更与风险管理3篇
- 二零二五年度智能穿戴设备委托生产加工合同书
- 二零二五年度房产投资与养老产业配套服务合作合同3篇
- 二零二五总经理聘任及员工培训合同:构建专业团队的长期合作协议2篇
- 2025年度怒省元执行和解协议自取执行效率与质量提升合同3篇
- 2025年度医疗设备研发承包加工合同协议3篇
- 2024初中数学竞赛八年级竞赛辅导讲义专题07 分式的化简与求值含答案
- GB 1886.174-2024食品安全国家标准食品添加剂食品工业用酶制剂
- 评判创业计划书
- 银行信访工作培训课件
- 北京市西城区2023-2024学年部编版七年级上学期期末历史试卷
- T-CPIA 0054-2023 光伏发电系统用柔性铝合金电缆
- 广东省博物馆
- 徐州市2023-2024学年九年级上学期期末道德与法治试卷(含答案解析)
- 农业信息化实现农业现代化的数字化转型
- 《义务教育道德与法治课程标准(2022年版)》
- 20以内退位减法口算练习题100题30套(共3000题)
评论
0/150
提交评论