2022-2023学年山西省风陵渡中学数学高一第二学期期末预测试题含解析_第1页
2022-2023学年山西省风陵渡中学数学高一第二学期期末预测试题含解析_第2页
2022-2023学年山西省风陵渡中学数学高一第二学期期末预测试题含解析_第3页
2022-2023学年山西省风陵渡中学数学高一第二学期期末预测试题含解析_第4页
2022-2023学年山西省风陵渡中学数学高一第二学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,,则与向量方向相同的单位向量为()A. B. C. D.2.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个B.0个或1个C.1个D.0个3.化简()A. B. C. D.4.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A. B.C. D.5.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.6.设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)7.已知等比数列的公比为,若,,则()A.-7 B.-5 C.7 D.58.已知样本的平均数是10,方差是2,则的值为()A.88 B.96 C.108 D.1109.已知函数的部分图象如图所示,则函数在上的最大值为()A. B. C. D.110.设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,且,则___________.12.已知,若数列满足,,则等于________13.在公比为q的正项等比数列{an}中,a3=9,则当3a2+a4取得最小值时,=_____.14.在等比数列{an}中,a115.和的等差中项为__________.16.已知是等比数列,且,,那么________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求函数的解析式,并求出的单调递增区间;(2)若,求的值18.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.19.已知数列是等差数列,是其前项和.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知的顶点,边上的中线所在直线方程为,边上的高,所在直线方程为.(1)求顶点的坐标;(2)求直线的方程.21.(1)解方程:;(2)有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由题得,设与向量方向相同的单位向量为,其中,利用列方程即可得解.【详解】由题可得:,设与向量方向相同的单位向量为,其中,则,解得:或(舍去)所以与向量方向相同的单位向量为故选A【点睛】本题主要考查了单位向量的概念及方程思想,还考查了平面向量共线定理的应用,考查计算能力,属于较易题.2、B【解析】若平面α外的两点所确定的直线与平面α平行,则过该直线与平面α平行的平面有且只有一个;若平面α外的两点所确定的直线与平面α相交,则过该直线的平面与平面α平行的平面不存在;故选B.3、A【解析】

减法先变为加法,利用向量的三角形法则得到答案.【详解】故答案选A【点睛】本题考查了向量的加减法,属于简单题.4、A【解析】由于频率分布直方图的组距为5,去掉C、D,又[0,5),[5,10)两组各一人,去掉B,应选A.5、C【解析】

根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题6、C【解析】

根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案.【详解】根据题意,设x>0,则-x<0,所以f(-x)=-x因为f(x)是定义在R上的奇函数,所以f(-x)=-x所以f(x)=x即x≥0时,当x<0时,f(x)=-x则f(x)的图象如图:在区间(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3时,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.7、A【解析】

由等比数列通项公式可构造方程求得,再利用通项公式求得结果.【详解】故选:【点睛】本题考查等比数列通项公式基本量的计算问题,考查基础公式的应用,属于基础题.8、B【解析】

根据平均数和方差公式列方程组,得出和的值,再由可求得的值.【详解】由于样本的平均数为,则有,得,由于样本的方差为,有,得,即,,因此,,故选B.【点睛】本题考查利用平均数与方差公式求参数,解题的关键在于平均数与方差公式的应用,考查计算能力,属于中等题.9、A【解析】

由图象求出T、ω和φ的值,写出f(x)的解析式,再求x∈[6,10]时函数f(x)的最大值.【详解】由图象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函数的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的图象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函数的解析式是f(x)=sin(x)当x∈[6,10]时,x∈[,],∴sin(x)∈[﹣1,];∴函数f(x)的最大值是.故选A.【点睛】本题考查了三角函数的图象与性质的应用问题,熟记图像与性质是关键,是基础题.10、B【解析】由向量平行的性质,有2∶4=x∶6,解得x=3,选B考点:本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.12、【解析】

根据首项、递推公式,结合函数的解析式,求出的值,可以发现数列是周期数列,求出周期,利用数列的周期性可以求出的值.【详解】,所以数列是以5为周期的数列,因为20能被5整除,所以.【点睛】本题考查了数列的周期性,考查了数学运算能力.13、【解析】

利用等比数列的性质,结合基本不等式等号成立的条件,求得公比,由此求得的值.【详解】∵在公比为q的正项等比数列{an}中,a3=9,根据等比数列的性质和基本不等式得,当且仅当,即,即q时,3a2+a4取得最小值,∴log3q=log3.故答案为:【点睛】本小题主要考查等比数列的性质,考查基本不等式的运用,属于基础题.14、64【解析】由题设可得q3=8⇒q=3,则a715、【解析】

设和的等差中项为,利用等差中项公式可得出的值.【详解】设和的等差中项为,由等差中项公式可得,故答案为:.【点睛】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.16、【解析】

先根据等比数列性质化简方程,再根据平方性质得结果.【详解】∵是等比数列,且,,∴,即,则.【点睛】本题考查等比数列性质,考查基本求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);递增区间为;(2)【解析】

(1)由图可知其函数的周期满足,从而求得,进而求得,再代入点的坐标可得值,从而求得解析式;解不等式,可得函数的单调增区间;(2)由题意可得,结合,得到,利用平方关系,求得,之后利用差角余弦公式求得结果.【详解】(1)设函数的周期为,由图可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的递增区间为;(2),又,∴,∴;∴.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,求正弦型函数的单调区间,同角三角函数关系式,利用整体角思维,结合差角正弦公式求三角函数值,属于简单题目.18、(1);(2)【解析】

(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【点睛】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)(2)【解析】试题分析:(1)将已知条件转化为首项和公差表示,解方程组可求得基本量的值,从而确定通项公式;(2)首先化简数列的通项公式,结合特点采用分组求和法求解试题解析:(1)∵数列是等差数列,是其前项和,.∴,解得,∴.(2)∵,考点:数列求通项公式及数列求和20、(1);(2)【解析】

(1)根据边上的高所在直线方程求出的斜率,由点斜式可得的方程,与所在直线方程联立即可得结果;(2)设则,代入中,可求得点坐标,利用两点式可得结果.【详解】(1)由边上的高所在直线方程为得,所以直线AB所在的直线方程为,即联立解得所以顶点的坐标为(4,3)(2)因为在直线上,所以设则,代入中,得所以则直线的方程为,即【点睛】本题主要考查直线的方程,直线方程主要有五种形式,每种形式的直线方程都有其局限性,斜截式与点斜式要求直线斜率存在,所以用这两种形式设直线方程时要注意讨论斜是否存在;截距式要注意讨论截距是否为零;两点式要注意讨论直线是否与坐标轴平行;求直线方程的最终结果往往需要化为一般式.21、(1)或。(2)、、、,或、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论