2022-2023学年山东省决胜新数学高一第二学期期末学业质量监测模拟试题含解析_第1页
2022-2023学年山东省决胜新数学高一第二学期期末学业质量监测模拟试题含解析_第2页
2022-2023学年山东省决胜新数学高一第二学期期末学业质量监测模拟试题含解析_第3页
2022-2023学年山东省决胜新数学高一第二学期期末学业质量监测模拟试题含解析_第4页
2022-2023学年山东省决胜新数学高一第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是等差数列的前项和,公差,,若成等比数列,则的最小值为()A. B.2 C. D.2.已知直线l和平面,若直线l在空间中任意放置,则在平面内总有直线和A.垂直 B.平行 C.异面 D.相交3.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,324.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.5.下列函数中,在区间上为增函数的是().A. B. C. D.6.在△中,为边上的中线,为的中点,则A. B.C. D.7.等比数列的前项和为,若,则公比()A. B. C. D.8.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.59.在中,已知,且满足,则的面积为()A.1 B.2 C. D.10.不等式的解集为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.12.如图所示,梯形中,,于,,分别是,的中点,将四边形沿折起(不与平面重合),以下结论①面;②;③.则不论折至何位置都有_______.13.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和_____.14.光线从点射向y轴,经过y轴反射后过点,则反射光线所在的直线方程是________.15.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.16.函数的单调递减区间为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知锐角三个内角、、的对边分别是,且.(1)求A的大小;(2)若,求的面积.18.已知,求(1)(2)19.如果定义在上的函数,对任意的,都有,则称该函数是“函数”.(I)分别判断下列函数:①;②;③,是否为“函数”?(直接写出结论)(II)若函数是“函数”,求实数的取值范围.(III)已知是“函数”,且在上单调递增,求所有可能的集合与20.如图,在直三棱柱中,,二面角为直角,为的中点.(1)求证:平面平面;(2)求直线与平面所成的角.21.如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由成等比数列可得数列的公差,再利用等差数列的前项和公式及通项公式可得为关于的式子,再利用对勾函数求最小值.【详解】∵成等比数列,∴,解得:,∴,令,令,其中的整数,∵函数在递减,在递增,∴当时,;当时,,∴.故选:A.【点睛】本题考查等差数列与等比数列的基本量运算、函数的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数,如果利用基本不等式求解,等号是取不到的.2、A【解析】

本题可以从直线与平面的位置关系入手:直线与平面的位置关系可以分为三种:直线在平面内、直线与平面相交、直线与平面平行,在这三种情况下再讨论平面中的直线与已知直线的关系,通过比较可知:每种情况都有可能垂直.【详解】当直线l与平面相交时,平面内的任意一条直线与直线l的关系只有两种:异面、相交,此时就不可能平行了,故B错.当直线l与平面平行时,平面内的任意一条直线与直线l的关系只有两种:异面、平行,此时就不可能相交了,故D错.当直线a在平面内时,平面内的任意一条直线与直线l的关系只有两种:平行、相交,此时就不可能异面了,故C错.不管直线l与平面的位置关系相交、平行,还是在平面内,都可以在平面内找到一条直线与直线垂直,因为直线在异面与相交时都包括垂直的情况,故A正确.故选:A.【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面之间的位置关系,考查空间想象能力和思维能力.3、B【解析】

对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.4、B【解析】

先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.5、B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.6、A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7、A【解析】

将转化为关于的方程,解方程可得的值.【详解】∵,∴,又,∴.故选A.【点睛】本题考查等比数列的基本运算,等比数列中共有五个量,其中是基本量,这五个量可“知三求二”,求解的实质是解方程或解方程组.8、D【解析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.9、D【解析】

根据正弦定理先进行化简,然后根据余弦定理求出C的大小,结合三角形的面积公式进行计算即可.【详解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面积.故选D.【点睛】本题主要考查三角形面积的计算,结合正弦定理余弦定理进行化简是解决本题的关键,属于基础题.10、A【解析】

因式分解求解即可.【详解】,解得.故选:A【点睛】本题主要考查了二次不等式的求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.12、①②【解析】

根据题意作出折起后的几何图形,再根据线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识即可判断各选项的真假.【详解】作出折起后的几何图形,如图所示:.因为,分别是,的中点,所以是的中位线,所以.而面,所以面,①正确;无论怎样折起,始终有,所以面,即有,而,所以,②正确;折起后,面,面,且,故与是异面直线,③错误.故答案为:①②.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识的应用,意在考查学生的直观想象能力和逻辑推理能力,属于基础题.13、【解析】

∵当时,仍是数列中的项,而数列是递增数列,∴,所以必有,,利用累加法可得:,故,得,故答案为.点睛:本题主要考查了数列的求和,解题的关键是单调性的利用以及累加法的运用,有一定难度;根据题中条件从中任取两项,当时,仍是数列中的项,结合递增数列必有,,利用累加法可得结果.14、(或写成)【解析】

光线从点射向y轴,即反射光线反向延长线经过关于y轴的对称点,则反射光线通过和两个点,设直线方程求解即可。【详解】由题意可知,所求直线方程经过点关于y轴的对称点为,则所求直线方程为,即.【点睛】此题的关键点在于物理学上光线的反射光线和入射光线关于镜面对称,属于基础题目。15、【解析】

根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.16、【解析】

利用二倍角降幂公式和辅助角公式可得出,然后解不等式,即可得出函数的单调递减区间.【详解】,解不等式,得,因此,函数的单调递减区间为.故答案为:.【点睛】本题考查正弦型三角函数单调区间的求解,一般利用三角恒等变换思想将三角函数解析式化简,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据正弦定理把边化为对角的正弦求解;(2)根据余弦定理和已知求出,再根据面积公式求解.【详解】解:(1)由正弦定理得∵,∴,又∵∴(2)由余弦定理得所以即∴∴的面积为【点睛】本题考查解三角形.常用方法有正弦定理,余弦定理,三角形面积公式;注意增根的排除.18、(1)(2)【解析】

利用同角三角函数基本关系式化弦为切,即可求解(1)(2)的值,得到答案.【详解】(1)由题意,知,则;(2)由==.【点睛】本题主要考查了三角函数的化简求值,以及同角三角函数基本关系式的应用,着重考查了推理与运算能力,属于基础题.19、(I)①、②是“函数”,③不是“函数”;(II)的取值范围为;(III),【解析】试题分析:(1)根据“β函数”的定义判定.①、②是“β函数”,③不是“β函数”;(2)由题意,对任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得实数a的取值范围(3)对任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,验证。(I)①、②是“函数”,③不是“函数”.(II)由题意,对任意的,,即.因为,所以.故.由题意,对任意的,,即.故实数的取值范围为.(Ⅲ)()对任意的(a)若且,则,,这与在上单调递增矛盾,(舍),(b)若且,则,这与是“函数”矛盾,(舍).此时,由的定义域为,故对任意的,与恰有一个属于,另一个属于.()假设存在,使得,则由,故.(a)若,则,矛盾,(b)若,则,矛盾.综上,对任意的,,故,即,则.()假设,则,矛盾.故故,.经检验,.符合题意点睛:此题是新定义的题目,根据已知的新概念,新信息来马上应用到题型中,根据函数的定义即函数没有关于原点对称的部分即可,故可以从图像的角度来研究函数;第三问可以假设存在,最后推翻结论即可。20、(1)证明见详解;(2).【解析】

(1)先证明平面,再推出面面垂直;(2)由(1)可知即为所求,在三角形中求角即可.【详解】(1)证明:因为,所以;又为的中点,所以.在直三棱柱中,平面.又因为平面中,所以,因为,所以平面,又因为平面,所以平面平面.(2)由(1)知为在平面内的射影,所以为直线与平面所成的角,设,则,在中,,在中,,又,得,因此直线与平面所成的角为.【点睛】本题第一问考查由线面垂直证明面面垂直,第二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论