2022-2023学年江苏省南京市程桥高级中学数学高一第二学期期末质量检测试题含解析_第1页
2022-2023学年江苏省南京市程桥高级中学数学高一第二学期期末质量检测试题含解析_第2页
2022-2023学年江苏省南京市程桥高级中学数学高一第二学期期末质量检测试题含解析_第3页
2022-2023学年江苏省南京市程桥高级中学数学高一第二学期期末质量检测试题含解析_第4页
2022-2023学年江苏省南京市程桥高级中学数学高一第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某部门为了了解用电量y(单位:度)与气温x(单位:°C)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程y=-0.8x+a,则摄氏温度(°C)4611用电量度数1074A.12.6 B.13.2 C.11.8 D.12.82.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.213.已知点是直线上一动点、是圆的两条切线,、是切点,若四边形的最小面积是,则的值为()A. B. C. D.4.“”是“函数的图像关于直线对称”的()条件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要5.函数的零点所在的区间是().A. B. C. D.6.角的终边在直线上,则()A. B. C. D.7.函数图象的一个对称中心和一条对称轴可以是()A., B.,C., D.,8.设平面向量,,若,则等于()A. B. C. D.9.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.10.为了了解某次数学竞赛中1000名学生的成绩,从中抽取一个容量为100的样本,则每名学生成绩入样的机会是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若向量,则与夹角的余弦值等于_____12.在等比数列中,若,则等于__________.13.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).14.在△中,三个内角、、的对边分别为、、,若,,,则________15.已知数列满足,,则______.16.若函数有两个不同的零点,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.18.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.19.已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且,,求△ABC的面积的最大值.20.如图,是正方形,是该正方形的中心,是平面外一点,底面,是的中点.求证:(1)平面;(2)平面平面.21.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

计算数据中心点,代入回归方程得到答案.【详解】x=4+6+113=7,代入回归方程y7=-0.8×7+a故答案选A【点睛】本题考查了回归方程,掌握回归方程过中心点是解题的关键.2、C【解析】

通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.3、D【解析】

作出图形,可知,由四边形的最小面积是,可知此时取最小值,由勾股定理可知的最小值为,即圆心到直线的距离为,结合点到直线的距离公式可求出的值.【详解】如下图所示,由切线长定理可得,又,,且,,所以,四边形的面积为面积的两倍,圆的标准方程为,圆心为,半径为,四边形的最小面积是,所以,面积的最小值为,又,,由勾股定理,当直线与直线垂直时,取最小值,即,整理得,,解得.故选:D.【点睛】本题考查由四边形面积的最值求参数的值,涉及直线与圆的位置关系的应用,解题的关键就是确定动点的位置,考查分析问题和解决问题的能力,属于中等题.4、A【解析】

根据充分必要条件的判定,即可得出结果.【详解】当时,是函数的对称轴,所以“”是“函数的图像关于直线对称”的充分条件,当函数的图像关于直线对称时,,推不出,所以“”是“函数的图像关于直线对称”的不必要条件,综上选.【点睛】本题主要考查了充分条件、必要条件,余弦函数的对称轴,属于中档题.5、C【解析】

因为原函数是增函数且连续,,所以根据函数零点存在定理得到零点在区间上,故选C.6、C【解析】

先由直线的斜率得出,再利用诱导公式将分式化为弦的一次分式齐次式,并在分子分母中同时除以,利用弦化切的思想求出所求代数式的值.【详解】角的终边在直线上,,则,故选C.【点睛】本题考查诱导公式化简求值,考查弦化切思想的应用,弦化切一般适用于以下两个方面:(1)分式为角弦的次分式齐次式,在分子分母中同时除以,可以弦化切;(2)代数式为角的二次整式,先除以,转化为角弦的二次分式其次式,然后在分子分母中同时除以,可以实现弦化切.7、B【解析】

直接利用余弦型函数的性质求出函数的对称轴和对称中心,即可得到答案.【详解】由题意,函数的性质,令,解得,当时,,即函数的一条对称轴的方程为,令,解得,当时,,即函数的一个对称中心为,故选B.【点睛】本题主要考查了余弦型函数的性质对称轴和对称中心的应用,着重考查学生的运算能力和转换能力,属于基础题型.8、D【解析】分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】

根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.10、A【解析】

因为随机抽样是等可能抽样,每名学生成绩被抽到的机会相等,都是.故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用坐标运算求得;根据平面向量夹角公式可求得结果.【详解】本题正确结果:【点睛】本题考查向量夹角的求解,明确向量夹角的余弦值等于向量的数量积除以两向量模长的乘积.12、【解析】

由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.13、②④【解析】

①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.14、【解析】

利用正弦定理求解角,再利用面积公式求解即可.【详解】由,因为,故,.故.故答案为:【点睛】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.15、1023【解析】

根据等比数列的定义以及前项和公式即可.【详解】因为所以,所以为首先为1公比为2的等比数列,所以【点睛】本题主要考查了等比数列的前项和:属于基础题.16、【解析】

令,可得,从而将问题转化为和的图象有两个不同交点,作出图形,可求出答案.【详解】由题意,令,则,则和的图象有两个不同交点,作出的图象,如下图,是过点的直线,当直线斜率时,和的图象有两个交点.故答案为:.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)证明,利用平面即可证得,问题得证.(2)过点作于点,过点作于点,连接.当与垂直时,与平面所成最大角,利用该最大角的正切值为即可求得,证明就是二面角的一个平面角,解即可.【详解】(1)因为底面为菱形,所以为等边三角形,又为中点所以,又所以因为平面,平面所以,又所以平面(2)过点作于点,过点作于点,连接当与垂直时,与平面所成最大角.由(1)得,此时.所以就是与平面所成的角.在中,由题意可得:,又所以.设,在中由等面积法得:解得:,所以因为平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一个平面角因为为的中点,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值为【点睛】本题主要考查了线面垂直的证明,考查了转化能力,还考查了线面角知识,考查了二面角的平面角作法,考查空间思维能力及解三角形,考查了方程思想及计算能力,属于难题.18、(1)【解析】

(1)利用同角的平方关系求cos(α-β)的值;(2)利用求出,再求的值.【详解】(1)因为,所以cos(α-β).(2)因为cosα=,所以,所以,因为β∈(0,),所以.【点睛】本题主要考查同角的三角函数的关系求值,考查差角的余弦,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1),(2)【解析】

(1)利用二倍角公式、辅助角公式进行化简,,然后根据单调区间对应的的公式求解单调区间;(2)根据计算出的值,再利用余弦定理计算出的最大值则可求面积的最大值,注意不等式取等号条件.【详解】解:(1)∴函数的单调递增区间为,(2)由(1)知得(舍)或∴有余弦定理得即∴当且仅当时取等号∴【点睛】(1)辅助角公式:;(2)三角形中,已知一边及其对应角时,若要求解面积最大值,在未给定三角形形状时,可选用余弦定理求解更方便,若是给定三角形形状,这时选用正弦定理并需要对角的范围作出判断.20、(1)见解析;(2)见解析.【解析】

(1)连接,证明后即得线面平行;(2)可证明平面,然后得面面垂直.【详解】(1)如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论