大学微积分第五章习题答案_第1页
大学微积分第五章习题答案_第2页
大学微积分第五章习题答案_第3页
大学微积分第五章习题答案_第4页
大学微积分第五章习题答案_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章不定积分(A)yf(x)的导数等于x2,且x2时y5,求这个1.已知函数函数.解f(x)(x2)dx12x22xCx2,y5代入上式得:C1将f(x)12x22x1xex,并且曲线经过点f(x)xex2.已知曲线上任一点切线的斜率为(0,2)求此曲线方程。yf(x),则解设所求曲线为:f(x)(xex)dx12x2exCx0,y2代入上式得:C1将f(x)12x2ex1t的速度为v3t2,且t0时距离s5,求此sf(t),则s(t)v3t2,3.已知质点在时刻质点的运动方程.解设所求运动方程为:sf(t)(3t2)dt3t22tC2将t0时,s5代入上式得:C5.1s32t22t54.已知某产品产量的变化率是时间f(t)atb(a,b是常数),设此产品t的函数P(t),且t时刻的产量函数为P(0)0,求P(t).P(t)f(t)atb解因为所以P(t)(atb)dta2t2btCP(0)0代入上式得:C0,将P(t)a2t2bt。C(x),固定成本(即5.设生产x单位某产品的总成本C是x的函数C(0))为20元,边际成本函数为C(x)2x10(元/单位),求总成C(x).本函数解C(x)(2x10)dxx210xC,1C(0)20代入得:C20,1将C(x)x210x20。6.求下列不定积分:(1)x(x3)dx32513x(x3)dx(x3x2)dxx22x2C解252(2)(t1)3dtt2解(t1)3dtt33t23t131dt(t3)dtttt2t221t23t3lntC12t(3)22xexdx122xexdx(4e)xdx12ln2(4e)xC解(4)e2x1dxex1e2x1ex1dx(ex1)dxexxC解x2(5)x4x21dx解x2x4dx(x21)(1x4)22dx(11x2x21)dxx21x212x1x32arctanxC3(6)xxxdx解xxxdxx8dx8x8C8xxxxC71515153(7)xcos2dx2cos2dx(cosx1)dx1(sinxx)C12x解22(8)cos2xsin2xcos2xdx解cos2xdxcos2xsin2xcos2xsin2xsin2xcos2xdx()dxsin2xcos2xsin2xcos2x)dx(cotxtanx)Csin2xcos2x(11sin2xcos2x7.用换元法求下列不定积分:(1)5(13x)2dx(13x)2dx(13x)2d(1-3x)2(13x)2C1557解321(2)dx(2x3)2解dx1d(2x+3)111(2x3)22(2x3)223C2(2x3)Cx2(3)x32dx1x2解4x32dxx(x21)x2dx(x2)dxx1x21x21x1x2221x2xxdx1x2dxdx11x2ln(1x2)2arctanxC22(x1)edxx22x(4)解(x1)edxed(x22x)1eC122xx22x22xxx22(5)(lnx)21dxx解(lnx)2113dx(lnx)21d(lnx)(lnx)3lnxCx1(6)exdxx21解e111xxdxexd()eCx2x(7)uu25duuu25du1u25d(u25)1(u25)C3解223(8)x2dx3(x35)25解dx1(x5)3d(x5)(x5)C3x35C3x22133333(x35)2x2(9)dxx1解x21dx(x1)d(x1)x1x12(x1)22x1C33(10)2x1dxx2x3解2x1dx1x2x3d(x2x3)=lnx2x3Cx2x3(11)1dxxx2解1dx1dx1dxx1x()x1xxx2211(x)2dx2arcsinxC(12)dx49x2解dx149x613x13xdarctanC3x1()226222(13)dx4x26解dx1112x)dx1ln2xCdx(4x2x(2x)(2)42x42x(14)dxx2x6解dx1(11)dx1(lnx3lnx+2)Cdx(x3)(x+2)x2x6x35x+251x3Cln5x+2(15)1dx2x12x1解1dx2x12x1dx2x12x1212x1d(2x1)2x1d(2x1)41(2x1)(2x1)C33226(16)xx3dx1x4解xx3dx1x4dxdx1141xd(1x4)+11x3xdx21x41x421x4471ln(1x4)1arctanx2C42dxx(1lnx)(17)dxx(1lnx)d(1lnx)(1lnx)ln1lnxC解(18)1dx52xx2解1dx16x12()dx11()2dx1arcsinx1C66x152xx26sin23xdx(19)sin23xdx1(1cos6x)dx1(x1sin6x)C解226(20)tanxdxx解tanxdx2tanxdx2lncosxCxsinxcosx1sin2x(21)dx8解sinxcosxdxsinxcosxsinxcos2xdxsinxcosxdxx2sinxcosx(cossinx)21sin2x211C(cosxsinx)2d(cosxsinx)cosxsinxxdx(22)xx21解xdxx21d(x21)1(xx21)xdxxdx22xx21=1x31(x21)2C333ecosexdx(23)xecosexdxcosexdexsinexC解xecosxdx(24)sinxsinxecosxdxedsinxeC解sinsinxxcos5xdx(25)解cosxdxcos4xdsinx(1sin2x)2dsinx5(12sin2xsin4x)dsinxsinx2sin3x1sin5xC35sin2xcos5xdx(26)9解sin2xcos5xdxsin2xcos4xdsinxsin2x(1sin2x)2dsinx(sin2x2sin4xsin6x)dsinx1sin3x2sin5x1sin7xC357(27)dxsin4x解sin2xcos2xdx(csc2xcot2xcsc2x)dxcotx1cot3xCdxsinx4sin4x3(28)tan3xdxtan3xdx(sec2x1)tanxdx1tan2xlncosxC解2(29)1dx1cosx解11cosxdx1dxsec2dtanxCxx222x2cos22(30)sin(x3)sin(3x)dx44解sin(x3)sin(3x)dx12cos(2x)cos(4x)dx44211sin(2x)1sin(4x)C222410(31)4arctanxx1x2dx解4arctanxx1x2dx4arctanxdarctanx11d(1x2)21x22(arctanx)21ln(1x2)C2(32)1sin2x2cos2xdx解1sin2x2cos2xdx12112cot2xd2cotx2arctan(2cotx)C2(33)tan(x3)cos2(x3)dx解tan(x3)dxtan(x3)dtan(x3)1tan2(x3)Ccos(x3)22(34)dtetet解dt11(et)2dtetd(et)=arctan(et)Cetet1e2t(35)dxex1解dxe11eeexxxdx1dxxe-1e-1xx1d(ex1)xlnex1xCxe-111ln(x1x2)dx(36)1x2解ln(x1x2)dxln(x1x2)dln(x11x22332ln(x1x)C28.用换元法求下列不定积分:(1)dx2x31t2x3,则x1(t23),dxtdt解设21t1dxtdt1dtt12x31tln(1t)C2x3ln(12x3)C(2)x42x3dxt42x3,则x1(t43),dx2t3dt解设21x42x3dx(t43)t2t3dt(t83t4)dt21t93t5C14(2x3)94(2x3)5C39595(3)x21xdx12t1x,则x1t2,dx2tdt解设x21xdx(1t2)2t(2)tdt2(t22t4t6)dt2(1t32t51t7)C3572211(1x)3(1x)5(1x)7C357(4)x1dxxx2tx2,则xt22,dx2tdt解设x1t231t22dtdx(t22)t2tdt21xx22(t2arctan)C2(x22arctanx2)Ct2222(5)3(1x2)dx2xsint,则dxcostdt解设sec2tdt1sin2t)2costdt33(1x2)dx(2xtantCC1x2(6)1(1x)dx22xtant,则dxsec2tdt解设131(1x)dx1sec2tdtcos2tdt11cos2tdtsec4t222112212xC1x2tsin2tCarctanx(7)1dxxx21xsect,则dxsecttantdt解设1dx1secttantsecttantdttCarccos1Cxx21x(8)x2dx1x2xsint,则dxcostdt解设sin2t1costcostdtsin2tdt21cos2tdt11x2dx1x2tsin2tC1(arcsinxx1x2)C222(9)1exdx2tt211ext,则xln(t21),dxdt解设141t21exdx2dt21dt2t1t1212t1t1C21exx2ln(1ex1)C2tln(10)1ex1dx1解设ex1t,则xln(1t),dxdt1t1111dxdtt1ex1dtlntln1tCt1t1ttClnex1Clne1xCexln1tx9.用分部积分法求下列不定积分:(1)xexdxxexdxxdexxexexdxxexexC解(2)ln(3x2)dx解2x3xln(3x2)dxxln(3x2)xdxxln(3x2)21xxln(3x2)2x23arctanC3(3)xcos2xdx解xcos2xdx1xdsin2x1xsin2x1sin2xdx222151xsin2x1cos2xC24(4)x2sinxdxx2sinxdxx2dcosxx2cosxcosxdx2解x2cosx2xcosxdxx2cosx2xdsinxx2cosx2xsinxsinxdxx2cosx2xsinx2cosx(5)arctanxdx解arctanxdxxarctanx1x2dxxarctanx1ln(1x2)Cx2(6)arcsinxdx解arcsinxdxxarcsinxdxxarcsinx1(1x2)2d(1x2)x121x2xarcsinx1x2C(7)exdxxt,则xt2,dx2tdt解设exdxet2tdt2tetdt2teedt2(tetet)Ctt2(xexex)C16(8)lnxdxx2解lnxdxlnxd1lnx1x1dlnxxx2x1lnx1dx1lnx1Cxxxx2(9)x3(lnx)2dx解x3(lnx)2dxln2xd(x4)1x4ln2xx42lnx1dx11444x1x4ln2x1x3lnxdx1x4ln2x1lnxd(1x4)424241x4ln2x1124x4lnx1xdx(8ln2x4lnx1)C1x4444x32(10)xsin2xdxxsin2xdxx1(1cos2x)dx1x21xcos2xdx2解241x2xdsin2x1x21(xsin2xsin2xdx)144441x21xsin2xcos2xC1448(11)sec3xdx17解sec3xdxsecxsec2xdxsecxdtanxsecxtanxtan2xsecxdxsecxtanx(sec2x1)secxdxsecxtanxsec3xdxsecxdxsecxtanxlnsecxtanxsec3xdxsec3xdx1(secxtanxlnsecxtanx)C2(12)arctan4x1dx解arctan4x1dxxarctan4x114x124x14xdxxarctan4x111d(4x1)xarctan4x114x1C84x14(13)(arcsinx)2dx(arcsinx)2dxx(arcsinx)2x2arcsinx1解dx1x2x(arcsinx)22arcsinxd1x2x(arcsinx)221x2arcsinx2dxx(arcsinx)221x2arcsinx2xC(14)1arctanxdxx218解1arctanxdxarctanxd(1)1arctanxdx11xx2xx1x21arctanx(x1)dxx1x2x1arctanxlnx1ln(1x2)Cx21arctanxCxln1xx2lnlnxdxx(15)lnlnxdxlnlnxdlnxlnxlnlnxlnxdlnlnx解x1lnxlnlnxdxlnxlnlnxlnxCx(1x2)lnxdx(16)(1x2)lnxdxlnxd(x1x3)解3(x1x3)lnx(x1x3)1dxx33(x1x3)lnx(11x2)dx33(x1x3)lnxxx3C139ln(x1x2)dx(17)19ln(x1x2)dxxln(x1x2)x1x2xln(x1x2)1x2C解dx(3x4)e3xdx(18)解(3x4)e3xdx1(3x4)de3x1(3x4)e3x1e3dx3x3331(3x4)e3x1e3xC(x1)e3xC33x(19)dxcos2xxdxxsec2xdxxdtanxxtanxtanxdx解cos2xxtanxlncosxC(20)xsinxdxxt,则xt2,dx2tdt解设2xsinxdxtsint2tdt2tsintdt2tdcost22(t2costcost2tdt)2(t2cost2tdsint)2t2cost4(tsintsintdt)2xcosx4xsinx4cosxC20(21)xarctanxdxxarctanxdxarctanxd(1x2)解21x2arctanx1x21xdx11222x1x2arctanx1xx41xdx2xt,则xt2,dx2tdt设xxdx2t4dt2t411dt2(t2111x1t1t1t2)dt222(1t3tarctant)C2(1x3xarctanx)C33xarctanxdx1x2arctanx1xx1x1arctanxC2622(22)ex(cosxsinx)dxex(cosxsinx)dx(cosxsinx)dex解(cosxsinx)exe(x-sinxcosx)dx(cosxsinx)ex(sinxcosx)dex(cosxsinx)ex(sinxcosx)exex(cosxsinx)dx21ex(cosxsinx)dxexcosxC(23)11exdxx31t,则x,dx1dt1解设xtt211exdxtetdttdettetetdtx3111teeCexeCttxx(24)xarccosxdx1x2xarccosxdxarccosxd1x2解1x21x2arccosx1x21dx1x2arccosxx1x2(25)xsec2xdx解xsec2xdxxdtanxxtanxtanxdxxtanx+lncosxC(26)xsinxcosxdxxsinxcosxdx1xsin2xdx1xdcos2x4解21xcos2xcos2xdxxcos2x1sin2xC144222x(12sin2x)1sin2xC1xsin2x1x1sin2x142248(27)sinlnxdx解sinlnxdxxsinlnxxcoslnx1dxxsinlnxcoslnxdxxxsinlnx(xcoslnxxsinlnx1dx)xsinlnxxcoslnxsinlnxdxxxsinlnxdx(sinlnxcoslnx)C2(28)xln(x1x2)dx1x2解ln(x1x2)dxln(x1x2)d1x2x1x21x2ln(x1x2)1x2dln(x1x2)1x2ln(x1x2)dx1x2ln(x1x2)xC10.求下列有理函数的不定积分:(1)dxx(1x)223解dx111x(1x)21dxx(1x)2x1xlnxln1x1xCln1x1x1C(2)61x3dx解131x261x3dx6133)dx(1x)(1xx2)dx6(1x1xx2(242x)dx2ln1x(2x1)3dx1x1xxxx1222ln1xln1xx2313dx(x1)2242ln1xln(xx1)23arctan2x1C23(3)3x31dxx21解3x31dx3x33x13xdx(3x1x23x1)dxx21x2121)dx3x2lnx12lnx1C(3xx1x1224(4)xdxx416解dx(x24)(x24)dx1(xxxx8x24x24)dxx41611x24x24(lnx241lnx24)C1lnC822162x3x22x3(5)dx解2x3dx(2x2)1dxd(x22x3)dxx22x31x22x3x22x3x22x3lnx22x31(11)dxlnx22x31lnx1C4x34x1x3(6)2x1x22x1dx解2x1dxx22x2x21dx1x22x1dxx22x1lnx22x11dx(x12)(x12)111lnx22x1()dx22x12x12252lnx12Cx12lnx22x14x2(7)dx1x6解dxxdx11(x)31(x)321x22d(x3)1x6321arctanx3C3dxx2(12x)(8)dxx2(12x)21(x12x4)dx解x22lnx12ln12xCxxxx2x1dx(9)3解dxdx1(11x)dxxxxxx1(x1)(x1)2x1x132221lnx11x121dx1dxx21x2221lnx11arctanx1ln(x21)C224(10)1x(1x10)2dx26解1dxx9dx(设x10(1x10)2x(1x)102x10t,则dt10x9dx)1x(1x)dx1110t(1t)2dt110[1111t(1t)2]dtt1021(lntln1t1t)C1(ln)C1x1x101011x101010a,b为常数,a0):f(axb)dx11.求下列不定积分(其中(1)解f(axb)dx1f(axb)d(axb)1f(axb)Caa(2)xf(x)dx解xf(x)dxxdf(x)xf(x)f(x)dxxf(x)f(x)C12.求下列不定积分的递推公式:(1)I(lnx)ndxn解I(lnx)ndxx(lnx)nxnlnn1x1dxxnx(lnx)nnlnxdxx(lnx)nnIn1n1Ix(lnx)nnI(n1,2,)nn127(2)I(arcsinx)ndxn解1I(arcsinx)ndxx(arcsinx)nxn(arcsinx)n1dx1x2nx(arcsinx)nn(arcsinx)d1x2n1x(arcsinx)nn1x2(arcsinx)n(n1)(arcsinx)dxn1n2x(arcsinx)nn1x2(arcsinx)n(n1)In2n1I(arcsinx)ndxx(arcsinx)nn1x2(arcsinx)n1n(n1)I(n2,nn2(B).1求下列不定积分:(1)dxxlnx(ln2x1)解dlnxlnx(ln2x1)dtt(t21)dxxlnx(ln2x1)(lnx1tdtlnt1ln(t21)Ct212tlnlnx1ln(ln2x1)C228(2)1sinxexdx1cosx解11cossinxxexdxdxsinxexexdx1cosx1cosxxx2sincosxdx2exdxex2x2cos22cos222exdtanxtanexdxx22extanxC;2(3)xearctanxdx(1x2)3解设tarctanx,则xtant,dxs=ectdt2earctanxdxtantetsec2tdtsintetdtxsec3t(1x2)3sintetdtsintdetetsintetcostdt而etsintcostdetetsintetcostsintetdtsintetdt1et(sintcost)C2earctanxdxx1earctanxC21x2x(1x2)329(4)11xdxx1x1xt,则x1x1t2,dx4t(1)t22解设dt1t211xdx4t411121t21t2dt4()dtx1x(1t2)(1t2)2(12ln11ttarctant)Cln1x1x2arctan1xC1x1x1x(5)11tanxdx解11tanxdxcosxdxcosxsinxsinxdxcosxsinxcosxsinxxsinxdxxcosxsinxdxcosxdxcosxsinxcosxsinxcosxsinxxd(cosxsinx)cosxsinxcosxdxcosxsinxxlncosxsinx11tanxdx11tanxdx=1x1lncosxsinxC22(6)xcos4x2dxsin3x30解xxcos42dxsin3xx18xcos2dx1xx1dsinxd81x4x2xsin3sin3sin222218x2xcsc2xcsc2dx21xcsc2()cotxCx18242;(7)dx(1ex)2ext,则xlnt,dx1dtt解设1(1t)21dt[1111t(1t)2dx(1ex)2]dttt11lntln1t1tCxln(1ex)C1ex(8)sinlnxdxx2解sinlnxdxsinlnxd(-1)-1sinlnxcoslnx1dx1xxxxx2-1sinlnxcoslnxd1xx31-1sinlnx(1coslnx1sinlnxdx)xxx2sinlnxdx-1(sinlnxcoslnx)+Cx22x(9)11x2arctan1x1xdx解1arctan1xdxarctan11xxdarctan1x1x1x21x121x21xarctanCarcsinxdx(10)x(1x)解arcsinxdx2arcsinxdarcsinx4(arcsinx)2C3x(1x)3(11)arctanexdxe2x解arctanexdxarctanexd(-1e)2x2e2x1e1dexarctane22xxe2x)e2x(121e2xarctanex1(1-11e2x)dex22e2x1e2xarctanex(--arctanex)+C1122ex32xtanxsec4xdx(12)解xtanxsec4xdxx1dsec4x1(xsec4xsec4xdx)441xsec4x1sin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论