七年级上册复习资料通用6篇_第1页
七年级上册复习资料通用6篇_第2页
七年级上册复习资料通用6篇_第3页
七年级上册复习资料通用6篇_第4页
七年级上册复习资料通用6篇_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/1七年级上册复习资料(通用6篇)

七年级上册复习资料初一数学复习资料4

第四章:平面图形及其位置关系

知识要求:

1、经历观察、测量、折叠、模型制作与图案设计等活动,发展空间概念;

2、在现实情景中认识线段、射线、直角、角等简单平面图形,了解平面上两条直线的平行和垂直关系;

3、能用数学符号表示角、线段、互相平行或垂直的直线;

4、会进行线段或角的比较,能估计一个角的大小,会进行角的单位的简单换算;

5、经历在操作活动中探索图形性质的过程,了角线段、平行线、垂线的有关性质;丰富数学学习的成功体验,积累操作活动经验,发展有条理的思考与表达;

6、借助三角尺、量角器、方格纸等工具,会画角、线段、平行线、垂线,能进行简单的图案设计,并能表达和交流自己的设计方案。

知识重点:

线段、射线、直线有平行、垂直等概念的理解及运用,线段长短及角大小的比较。

知识难点:

角的单位换算,准确理解线段、直线、射线及平行、垂直等概念,进行简单的图案设计,这些都是本章的难点。

考点:

本章在考察中往往单独成题,多以填空题的形式出现,其中主要是识别图形、判断线的类型及图形的位置关系,对线段、直线、射线及平行、垂直概念的理解,根据图形对线段的长度和角的度数进行推理计算,对角度关系进行换算,是考试的重点。主要考察学生对基本概念和基本要领的掌握情况。

知识点:

一、线段、射线、直线

1、线段、射线、直线的定义

(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。

2、线段、射线、直线的表示方法

(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

3、直线公理:过两点有且只有一条直线。简称两点确定一条直线。

4、线段的比较

(1)叠合比较法;(2)度量比较法。

5、线段公理:“两点之间,线段最短”。连接两点的线段的长度,叫做这两点的距离。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C是线段AB的中点,则:AC=BC=AB或AB=2AC=2BC。

二、角

1、角的概念:

(1)角可以看成是由两条有共同端点的射线组成的图形。两条射线叫角的边,共同的端点叫角的顶点。

(2)角还可以看成是一条射线绕着他的端点旋转所成的图形。

2、角的表示方法:

角用“∠”符号表示

(1)分别用两条边上的两个点和顶点来表示。(顶点必须在中间)

(2)在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角。

(3)在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角。

(4)直接用一个大写英文字母来表示。

3、角的度量:会用量角器来度量角的大小。

4、角的单位:角的单位有度、分、秒,用°、′、″表示,角的单位是60进制与时间单位是类似的。度、分、秒的换算:1°=60′,1′=60″。

5、锐角、直角、钝角、平角、周角的概念和大小

(1)平角:角的两边成一条直线时,这个角叫平角。

(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。

(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。

6、画两个角的和,以及画两个角的差

(1)用量角器量出要画的两个角的大小,再用量角器来画。

(2)三角板的每个角的度数,30°、60°、90°、45°。

7、角的平分线

从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。

若BD是∠ABC的平分线,则有:∠ABD=∠CBD=∠ABC;∠ABC=2∠ABD=2∠CBD

8、角的计算。

三、平行线和垂线

1、平行线的定义:

(1)如果在同一平面内的两条不相交的直线叫平行线。

(2)平行线用“∥”来表示;强调要在同一平面内,若不在同一平面内的两条直线,又不平行,又不相交,叫异面直线;线段、射线的平行关系根据它所在的直线来决定,若它们所在的直线不相交,就平行,若所在的直线相交,就不平行。

2、平行的公理及推论:

(1)平行公理:若经过直线外一点,有且只有一条直线与已知直线平行。

(2)平行公理的推论:两条直线都平行于第三条直线,那么这两条直线也相互平行。(平行于同一直线的两直线平行)

3、画已知直线的平行线的方法

用直尺和三角板画平行线。

4、垂直的概念:

(1)如果两条直线相交成直角,那么这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫做垂足。

(2)两条线段互相垂直指它们所在的直线互相垂直。

(3)两条直线垂直用“⊥”来表示,如直线AB与直线CD垂直,记作:AB⊥BC

5、垂线段的概念:

(1)过一点A做直线a的垂线,垂足为B,则线段AB叫直线a的垂线段。

(2)直线外一点A到直线a的垂线段长度叫点A到直线a的距离。

6、垂直的性质:平面内,过一点有且只有一条直线与已知直线垂直。

四、七巧板

七巧板的制作:七巧板由5块三角形,1块正方形,一块平行四边形组成。

练习题:

一、选择题

1、如图,以O为端点的射线有(

)条

A、3

B、4

C、5

D、6

2、平面上有任意三点,经过其中两点画一条直线,可以画(

)直线

A、1条

B、2条

C、3条

D、1条或者3条

3、点C在线段AB上,不能判断点C是线段AB中点的式子是(

A、AB=2AC

B、AC+BC=AB

C、BC=

D、AC=BC

4、下列画图语句中,正确的是(

A、画射线OP=3cm

B、连结A、B两点

C、画出A、B两点的中点

D、画出A、B两点的距离

5、下列说法中正确的是(

A、角是由两条射线组成的图形

B、一条射线就是一个周角

C、两条直线相交,只有一个交点

D、如果线段AB=BC,那么B叫做线段AB的中点

6、在同一平面内,两条直线的位置可能是(

A、平行

B、相交

C、相交或平行

D、以上都不对。

7、如图,∠AOB=90°,以O为顶点的锐角共有(

)个

A、6

B、5

C、4

D、3

8、经过直线外一点,有且只有一条直线与已知直线(

A、垂直

B、平行

C、垂直或平行

D、以上都不是

二、填空题

9、如图,点A、B、C、D在直线l上

(1)AC=_______-CD;AB+_______+CD=AD;

(2)图中共有________条线段,共有_______条射线,以点C为端点的射线是________。

10、45°=______直角=_______平角。

11、(1)23°30′=________°;(2)78.36°=______°____′________″。

12、如果a∥b,b∥c,那么a_____c。

13、如图,∠AOD=∠AOC+_______=∠DOB+_______。

三、解答题

14、如图,M是线段AC的中点,N是线段BC的中点。

(1)如果AC=8cm,BC=6cm,求MN的长

(2)如果AM=5cm,CN=2cm,求线段AB的长

15、如图,∠AOC和∠BOD都是直角,且∠AOB=150°,求∠COD的度数。

16、只剪一刀,将图(1)一分为二后,能再拼出后面图(2)—(6),问:应该怎么剪。

四、选择题

1、按下列线段的长度,点A、B、C一定在同一直线上的是(

A、AB=2cm,BC=2cm,AC=2cm

B、AB=1cm,BC=1cm,AC=2cm

C、AB=2cm,BC=1cm,AC=2cm

B、AB=3cm,BC=1cm,AC=1cm

2、8点30分时,时钟的时针与分针所夹的锐角是(

A、70°

B、75°

C、80°

D、60°

3、直线l上有两点A、B,直线l外两点C、D,过其中两点画直线,共可以画(

A、4条直线

B、6条直线

C、4条或6条直线

D、无数条直线

4、或∠1和∠2为锐角,则∠1+∠2满足(

A、0°<∠1+∠2<90°

B、0°<∠1+∠2<180°

C、∠1+∠2<90°

D、90°<∠1+∠2<180°

5、下面说法正确的是(

A、过两点有且只有一条直线

B、平角是一条直线

C、两条直线不相交就一定平行

D、过一点有且只有一条直线与已知直线平行

七年级上册复习资料七年级下册数学复习资料

虽然在学习的过程中会遇到许多不顺心的事,但古人说得好――吃一堑,长一智。多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。没有失败和挫折的人,是永远不会成功的。本篇文章是无忧考网为您整理的《七年级下册数学复习资料》,供大家借鉴。※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;图形平移前后的形状和大小没有变化,只是位置发生变化;图形平移后,对应点连成的线段平行且相等多次平移相当于一次平移。多次对称后的图形等于平移后的图形。平移是由方向,距离决定的。经过平移,对应线段平行且相等,对应角相等,对应点所连接的线段平行且相等。这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移※1、在相似多边形中,最为简简单的就是相似三角形.※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5、相似三角形周长的比等于相似比.※6、相似三角形面积的比等于相似比的平方.科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数。扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。平均数:对于N个数X1,X2…XN,我们把/N叫做这个N个数的算术平均数,记为X。加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数。②一组数据中出现次数的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

七年级上册复习资料七年级下册数学复习资料

相交线与平行线

一、相交线

两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。如:∠1、∠3。

③对顶角相等。

二、垂线

1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角

两条直线被第三条直线所截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

四、平行线及其判定

平行线

1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b(在同一平面内,不相交的两条直线叫做平行线。)

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

七年级上册复习资料数学:

知识梳理:

⑴正数与负数:负数产生的必要性;具有相反意义的量。

⑵有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。

⑶相反数、倒数、绝对值:

只有符号不同的两个数是互为相反数,a的相反数为-a;

一个数除以1所得的商是这个数的倒数,零没有倒数;

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

⑷数轴:原点、正方向、单位长度是数轴的三要素。

⑸有理数的大小比较:

方法一:零大于一切正数,而小于一切负数;

两个负数,绝对值大的反而小。

方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。

实数

一、知识梳理:

1、实数的分类.有理数(正有理数、0、负有理数),无理数(无限不循环小数)

2、实数的有关概念:

(1)平方根:一般地,如果一个数的平方等于,那么这个数叫做的平方根.正数有两个平方根,负数没有平方根,0的平方根是0

(2)算术平方根:正数的正平方根和零的平方根,统称算术平方根.

(3)立方根:一个数的立方等于a,这个数叫做a的立方根。

3、实数与数轴上的点一一对应。会在数轴上表示有些无理数

知识要点】

1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程

2.解一元一次方程的一般步骤是:

(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”

3.一元一次方程ax=b的解的情况:

(1)当a≠0时,ax=b有唯一的解

(2)当a=0,b≠0时,ax=b无解

(3)当a=0,b=0时,ax=b有无穷多个解七年级上册复习资料七年级下册数学复习资料※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:bb:a,与互为倒数;(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。(4)多次对称后的图形等于平移后的图形。(5)平移是由方向,距离决定的。第1页共4页(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移※1、在相似多边形中,最为简简单的就是相似三角形.※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5、相似三角形周长的比等于相似比.※6、相似三角形面积的比等于相似比的平方.科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。第2页共4页②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。平均数:对于N个数_1,_2..._N,我们把(_1+_2+...+_N)/N叫做这个N个数的算术平均数,记为_(上边一横)。加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位第3页共4页数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当编写的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。第4页共4页

七年级上册复习资料一、代数式初步知识

1.代数式

用运算符号“+-×

÷

……”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2.列代数式的几个注意事项

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a

(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(5)a与b的差写作ab,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做ab和ba.

3.几个重要的代数式

(1)a与b的平方差是:a2b2;a与b差的平方是:(ab)2

(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n1、n、n+1。

(4)若b>0,则正数是:a2+b,负数是:a2b,非负数是:b2

,非正数是:b2

二、有理数

1.有理数

凡能写成(a、b都是整数且a≠0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。(注意:0即不是正数,也不是负数;a不一定是负数,+a也不一定是正数;p不是有理数)

有理数中,1、0、1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

自然数是指0和正整数;a>0,则a是正数;a<0,则a是负数;a≥0,则a是正数或0(即a是非负数);a≤0,则a是负数或0(即a是非正数)。

2.数轴

数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数

只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

注意:ab+c的相反数是a+bc;ab的相反数是ba;a+b的相反数是ab;

相反数的和为0时,则a+b=0;即a、b互为相反数。

4.绝对值

正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。(注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。

绝对值可表示为|a|。

|a|是重要的非负数,即|a|≥0。(注意:|a|·|b|=|a·b|)。

5.有理数比大小

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数小数>0,小数大数<0.

6.互为倒数

乘积为1的两个数互为倒数。(注意:0没有倒数;若a、b≠0,那么的倒数是;倒数是本身的数是±1;若ab=1,则a、b互为倒数;若ab=1,则a、b互为负倒数。

7.有理数加减法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数与0相加,仍得这个数。

8.有理数加减的运算律

(1)加法的交换律:a+b=b+a。

(2)加法的结合律:(a+b)+c=a+(b+c)。

9.有理数乘法法则

减去一个数,等于加上这个数的相反数;即ab=a+(b)。

10.有理数乘法法

(1)两数相乘,同号为正,异号为负,并把绝对值相乘。

(2)任何数同零相乘都得零。

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

11.有理数乘法的运算律

(1)乘法的交换律:ab=ba。

(2)乘法的结合律:(ab)c=a(bc)。

(3)乘法的分配律:a(b+c)=ab+ac。

12.有理数除法法则

除以一个数等于乘以这个数的倒数。(注意:零不能做除数)

13.有理数乘方的法则

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数。注意:当n为正奇数时:n=an或n=n,当n为正偶数时:n=an

或n=n。

18.乘方的定义

(1)求相同因式积的运算,叫做乘方。

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0,则a=0,b=0。

(4)底数的小数点移动一位,平方数的小数点移动二位。

15.科学计数法

把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

16.近似数的精确度

一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

17.有效数字

从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

18.混合运算法则

先乘方,后乘除,最后加减。注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。

19.特殊值法

是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。

三、整式的加减

1.单项式

在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

2.单项式的系数与次数

单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

3.多项式

几个单项式的和叫多项式。

4.多项式的项数与次数

多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)

和是常见的两个二次三项式。

5.整式

凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

6.同类项

所含字母相同,并且相同字母的指数也相同的单项式是同类项。

7.合并同类项法则

系数相加,字母与字母的指数不变。

8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论