人教版高一数学必修2-空间直线的垂直关系练习题(含答案详解)_第1页
人教版高一数学必修2-空间直线的垂直关系练习题(含答案详解)_第2页
人教版高一数学必修2-空间直线的垂直关系练习题(含答案详解)_第3页
人教版高一数学必修2-空间直线的垂直关系练习题(含答案详解)_第4页
人教版高一数学必修2-空间直线的垂直关系练习题(含答案详解)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

必修2空间中的垂直关系基础知识点一、选择题:1.若斜线段AB是它在平面α上的射影的长的2倍,则AB与平面α所成的角是 ().A.60°B.45°C.30°D.120°2.直线l⊥平面α,直线m⊂α,则().A.l⊥mB.l∥mC.l,m异面D.l,m相交而不垂直3.如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的线段有().A.1条B.2条C.3条D.4条4.若平面α⊥平面β,平面β⊥平面γ,则().A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能5.已知长方体ABCDA1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则 ().A.ME⊥平面ACB.ME⊂平面ACC.ME∥平面ACD.以上都有可能6.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是().A.平面PAB与平面PBC、平面PAD都垂直B.它们两两垂直C.平面PAB与平面PBC垂直,与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直二、填空题:7.在正方体A1B1C1D1ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O的关系是________.8.若a,b表示直线,α表示平面,下列命题中正确的有________个.①a⊥α,b∥α⇒a⊥b;②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.9.α、β是两个不同的平面,m、n是平面α及β外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③m⊥α;④n⊥β.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题________.10.如图,正方体ABCDA1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1ABC的大小为________.三、解答题:11.如图所示,在Rt△AOB中,∠ABO=eq\f(π,6),斜边AB=4,Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角BAOC是直二面角,D是AB的中点.求证:平面COD⊥平面AOB.12.如图,在四棱锥P­ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA∥平面EDB;(2)求证:PB⊥平面EFD.综合提高1.已知l,m,n为两两垂直的三条异面直线,过l作平面α与直线m垂直,则直线n与平面α的关系是().A.n∥αB.n∥α或n⊂αC.n⊂α或n与α不平行D.n⊂α2.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是().A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β3.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角().A.相等B.互补C.相等或互补D.关系无法确定4.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现在沿SE,SF,EF把这个正方形折成一个四面体,使G1、G2、G3重合,重合后的点记为G.给出下列关系:①SG⊥平面EFG;②SE⊥平面EFG;③GF⊥SE;④EF⊥平面SEG.其中成立的有().A.①②B.①③C.②③D.③④5.如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的________心.6.已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,若A1在底面ABC内的射影为△ABC的中心,则AB1与ABC底面所成的角的正弦值等于________.7.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角为60°.其中真命题的编号是________(写出所有真命题的编号).8.如图,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=eq\r(2),等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,则CD=________.9.如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD所在的平面,过点A且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB,AG⊥SD.10.如图,在四棱锥P-ABCD中,PO⊥面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC.(2)求点A到平面PBC的距离.11.如图,已知平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.12.(创新拓展)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且eq\f(AE,AC)=eq\f(AF,AD)=λ(0<λ<1).(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;(2)当λ为何值时,平面BEF⊥平面ACD?参考答案基础篇1.答案A;解析斜线段、垂线段以及射影构成直角三角形.如图所示,∠ABO即是斜线AB与平面α所成的角,又AB=2BO,所以cos∠ABO=eq\f(OB,AB)=eq\f(1,2).所以∠ABO=60°.故选A.2.答案A;解析无论l与m是异面,还是相交,都有l⊥m,考查线面垂直的定义,故选A.3.答案D;解析∵PO⊥平面ABC,∴PO⊥AC,又∵AC⊥BO,∴AC⊥平面PBD,∴平面PBD中的4条线段PB,PD,PO,BD与AC垂直.4.答案D;解析以正方体为模型:相邻两侧面都与底面垂直;相对的两侧面都与底面垂直;一侧面和一对角面都与底面垂直,故选D.5.答案A;解析由于ME⊂平面AB1,平面AB1∩平面AC=AB,且平面AB1⊥平面AC,ME⊥AB,则ME⊥平面AC.6.答案A;解析∵PA⊥平面ABCD,∴PA⊥BC.又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵BC⊂平面PBC,∴平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A,得AD⊥平面PAB.∵AD⊂平面PAD,∴平面PAD⊥平面PAB.由已知易得平面PBC与平面PAD不垂直,故选A.7.答案垂直;解析由正方体性质知AC⊥BD,BB1⊥AC,∵E,F是棱AB,BC的中点,∴EF∥AC,∴EF⊥BD,EF⊥BB1,∴EF⊥平面BB1O.8.答案2;解析由线面垂直的性质定理知①④正确.9.答案①③④⇒②或②③④⇒①;解析如图,PA⊥α,PB⊥β,垂足分别为A、B,α∩β=l,l∩平面PAB=O,连接OA、OB,可证明∠AOB为二面角αlβ的平面角,则∠AOB=90°⇔PA⊥PB.10.答案45°;解析∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1ABC的平面角,大小为45°.11.证明:由题意:CO⊥AO,BO⊥AO,∴∠BOC是二面角BAOC的平面角,又∵二面角BAOC是直二面角,∴CO⊥BO,又∵AO∩BO=O,∴CO⊥平面AOB,∵CO⊂平面COD,∴平面COD⊥平面AOB.12.证明:(1)连接AC,AC交BD于点O.连接EO,如图.∵底面ABCD是正方形,∴点O是AC的中点.在△PAC中,EO是中位线,∴PA∥EO.而EO⊂平面EDB且PA⊄平面EDB.所以PA∥平面EDB.(2)∵PD⊥底面ABCD且DC⊂底面ABCD.∴PD⊥DC.∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.综合提高1.答案A;解析∵l⊂α,且l与n异面,∴n⊄α,又∵m⊥α,n⊥m,∴n∥α.2.答案D;解析如图,AB∥l∥m,AC⊥l,m∥l⇒AC⊥m,AB∥l⇒AB∥β.故选D.3.答案D;解析如图所示,平面EFDG⊥平面ABC,当平面HDG绕DG转动时,平面HDG始终与平面BCD垂直,所以两个二面角的大小关系不确定,因为二面角HDGF的大小不确定.4.答案B;解析由SG⊥GE,SG⊥GF,得SG⊥平面EFG,排除C、D;若SE⊥平面EFG,则SG∥SE,这与SG∩SE=S矛盾,排除A,故选B.5.答案垂;解析三棱锥的三个侧面两两相互垂直,则三条交线两两互相垂直,可证投影是底面三角形的垂心.6.答案:eq\f(\r(2),3);解析由题意知,三棱锥A1ABC为正四面体(各棱长都相等的三棱锥),设棱长为a,则AB1=eq\r(3)a,棱柱的高A1O=eq\f(\r(6),3)a(即点B1到底面ABC的距离),故AB1与底面ABC所成的角的正弦值为eq\f(A1O,AB1)=eq\f(\r(2),3).'7.答案①②④;解析本题主要考查了空间直线与直线、直线与平面的夹角.8.答案2;解析取AB的中点E,连接DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC.又CE⊂平面ABC可知DE⊥CE.由已知可得DE=eq\r(3),EC=1,在Rt△DEC中,CD=eq\r(DE2+CE2)=2.9.证明因为SA⊥平面ABCD,所以SA⊥BC.又BC⊥AB,SA∩AB=A,所以BC⊥平面SAB,又AE⊂平面SAB,所以BC⊥AE.因为SC⊥平面AEFG,所以SC⊥AE.又BC∩SC=C,所以AE⊥平面SBC,所以AE⊥SB.同理可证AG⊥SD.10.(1)证明因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.因为∠BCD=90°,所以BC⊥CD.又PD∩CD=D,所以BC⊥平面PCD.而PC⊂平面PCD,所以PC⊥BC.(2)解如图,过点A作BC的平行线交CD的延长线于E,过点E作PC的垂线,垂足为F,则有AE∥平面PBC,所以点A到平面PBC的距离等于点E到平面PBC的距离.又EF⊥PC,BC⊥平面PCD,则EF⊥BC.BC∩PC=C,所以EF⊥平面PBC.EF即为E到平面PBC的距离.又因为AE∥BC,AB∥CD,所以四边形ABCE为平行四边形.所以CE=AB=2.又PD=CD=1,PD⊥平面ABCD,CD⊂平面ABCD.所以PD⊥CD,∠PCD=45°.所以EF=eq\r(2).即点A到平面PBC的距离为eq\r(2).11.证明(1)在平面ABC内取一点D,作DF⊥AC于F,∵平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.又∵PA⊂平面PAC,∴DF⊥PA.作DG⊥AB于G,同理可证DG⊥PA.∵DG∩DF=D,∴PA⊥平面ABC.(2)连接BE并延长交PC于H.∵E是△PBC的垂心,∴PC⊥BH,又AE⊥平面PBC,故AE⊥PC,且AE∩BE=E,∴PC⊥平面ABE.∴PC⊥AB.又∵PA⊥平面ABC,∴PA⊥AB,且PA∩PC=P,∴AB⊥平面PAC,∴AB⊥AC,即△ABC是直角三角形.12.(1)证明∵AB⊥平面BCD,∴AB⊥CD.∵CD⊥BC且AB∩BC=B,∴CD⊥平面ABC.又∵eq\f(AE,AC)=eq\f(AF,AD)=λ(0<λ<1),∴不论λ为何值,恒有EF∥CD,∴EF⊥平面AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论