互相关函数的应用_第1页
互相关函数的应用_第2页
互相关函数的应用_第3页
互相关函数的应用_第4页
互相关函数的应用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

州大学机工测技础》程业题目互相关函数的应用—测量钢带速度、确定输管裂损置姓名:王臻学

号:1442404033年级:_14级专业:车辆程201704月03日

xyyxyyy互相关函数的用——量钢带速度、确定输油裂损位一实目1、理解相关性原理握信号的互相关函数的求法以及互相关函数的特性。2、利用互相关函数知识,探索测量钢带速度、确定输油管裂损位置的方法

。二实原1相关的概念相关是指客观事物变化量之间的相依关系两个随机变量之间具有某种关系时随着某个变量数值的确定另一变量却可能去许多值但取值有一定的概率统计规律这时称两个随机变量存在着相关关系在统计学中是用相关系数来描述两个变量x,y之间的相关性,相关系数的公式为

xy

x注:E为数学期望;x

为随机变量x的均值,

x

=E[x];y

为随机变量y的均值,

y

=E[y];,

为随机变量x,y的标准差;

x

=E[(x-

x

)]

=E[(y-)]利用柯西—许瓦兹不等式:E[(x-

x)(y-y)]

≦E[(x-x)

]E[(y-)

]式中

是两个随机变量波动量之积的数学期望,称之为协方差或相关性,表征了x、y之间的关联程度;、分别为随机变量x、y的均方差,是随机变量波动量平方的数学期望。故知|

|≤1当

的绝对值越接近1x和y的性相关程度越好当

、接近于零,则可以认为x,y两变量无关。2信号的互相函数两个各态经过程的随机信号和y(t)的相互关系函数

定义为:(xy

)T

1

T

xt)(t

)当时移足够大或时x(t)和y(t)互相不相关,

,而

x

y

的最大变动范围在

y

-

之间,即:(

(xy

)

)式中

、——分别为x(t)、y(t)的均值;

——分别为、y(t)的标准差。3互相关的特a.互相关函数不是偶函数,其图形不对称,但与其共轭函数对称。即(R(b.最大值不是出现0处,而是在某时移量

处。时移量0

反映两信号

x(

(t

之间主传输通道的滞后时间图1两信号在时差处相关程度最大。最大值为:R)xyyx

yc.若随机信号

(t

yt)

中没有同频率的周期分量,则当很大时彼此之间互不相关,即:0,R)xy

d.两个具有相同频率的周期信号的互相关函数仍是周期信号互相关函数中保留了原信号的频率幅值以及相位差的信息而两个不同频率的周期信号是不相关的。

图1三互关数应1钢带运动的接触测互相关技术广泛应用于各种测试中程中还经常用两个间隔一定距离的传感器来不接触地测量运动物体的速度如图所示测量热轧钢钢带速度的示意图钢带表面的反射光经透镜聚焦在相距为的两个光电池上反射光强度的波动经过光电池转换为电信号再进行相关处理当可调延时τ等于钢带上某点在两个测试点之间经过所需的时间τd时,互相关函数为最大值。钢带的运动速度

vd

。图2

TTTT设两传感器接收到的信号分别为:函数互相关。

xtπ(t

,则两信号(

)limTT

TT

)xt)(sin(2πt(

-0.1)]dtcos(2π

)当

-,n

时,取最大值,考虑到被测量为时间,所以当

时取最大值。MATLAB程序代码如下:clc;clear;dt=0.001;t=-1:dt:1;x=sin(2*pi*t);y=sin(2*pi*(t-0.1));subplot(2,1,1);plot(t,x);holdonplot(t,y);axis([-11-11]);[a,b]=xcorr(x,y,'unbiased');subplot(2,1,2);plot(b*dt,a);axis([-11-11]);图像如下(图3

图32确定输油管损位置图4是确定深埋在地下的输油管裂损位置的例子。漏损处视为向两侧传播声响的声源在两侧官道上分别放置传感器和2因为放传感器的两点距漏损处不等远,则漏油的声响传至传感器就有时差,在互相关图上

m

(处

)

有最大值,这个

m

就是时差,由

m

就可确定漏损的位置:1s2式中为两传感器的中点至漏损处的距离;音响通过管道的传播时间。图4现设传感器1和传感器2接收到的声音的电信号分别为x1=90sin(π(n-0.1Fs))、x2=50sin(pi*(n-0.3*Fs)。MATLAB代码如下:clear;N=1000;n=0:N-1;Fs=500;t=n/Fs;Lag=200;x1=90*sinc(pi*(n-0.1*Fs));x2=50*sinc(pi*(n-0.3*Fs));[c,lags]=xcorr(x1,x2,Lag,'unbiased');subplot(2,1,1),plot(t,x1,'r');holdon;plot(t,x2,'b:');legend('信号x1','信号x2');xlabel('时间/s');ylabel('x1(t)x2(t)');title('信号x1和x2');holdoff;subplot(2,1,2),plot(lags/Fs,c,'r');xlabel('时间/s');ylabel('Rxy(t)');

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论