未来能源研究所-学习如何通过清洁能源政策评估更好地重建_第1页
未来能源研究所-学习如何通过清洁能源政策评估更好地重建_第2页
未来能源研究所-学习如何通过清洁能源政策评估更好地重建_第3页
未来能源研究所-学习如何通过清洁能源政策评估更好地重建_第4页
未来能源研究所-学习如何通过清洁能源政策评估更好地重建_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LearningHowtoBuildBack

BetterthroughCleanEnergy

PolicyEvaluation

JosephE.Aldy

WorkingPaper22-15

August2022

ResourcesfortheFuturei

AbouttheAuthor/Authors

JosephE.AldyisauniversityfellowatResourcesfortheFutureandaProfessorofthePracticeofPublicPolicyatHarvard’sKennedySchool.Hisresearchfocusesonclimatechangepolicy,energypolicy,andmortalityriskvaluation.AldyalsocurrentlyservesasthefacultychairoftheRegulatoryPolicyProgramattheHarvardKennedySchool.In2009–2010,heservedasthespecialassistanttothepresidentforenergyandtheenvironment,reportingthroughboththeWhiteHouseNationalEconomicCouncilandtheOfficeofEnergyandClimateChange.

Acknowledgements

FantasticresearchassistancewasprovidedbyMichaelChen,EmilyFry,CharlesHua,MichelleLi,ConnorMcRobert,EmMurdock,KenNorris,SiddShrikanth,andDanStuart.IhavebenefittedfromexcellentfeedbackfromDanielleArostegui,JulieGohlke,WesLook,KevinRennert,MorganRote,BeiaSpiller,andNatashaVidangos,seminarattendeesatFloridaState,MIT,ResourcesfortheFuture,UniversityofHouston,andtheASSAannualconference.ThisresearchhasbeensupportedbyEnvironmentalDefenseFund,HarvardUniversityCenterfortheEnvironment,HKSMossavar-RahmaniCenterforBusinessandGovernment,andHKSCenterforPublicLeadership.

LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluationii

AboutRFF

ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutioninWashington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFiscommittedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.

Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesofinformationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.

SharingOurWork

OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit

/licenses/by-nc-nd/4.0/

.

iii

Abstract

TheInfrastructureInvestmentandJobsAct,theCHIPSandScienceAct,andtheInflationReductionActauthorizedandappropriatedunprecedentedspendingandtaxexpenditurestodecarbonizetheAmericaneconomy.Inthespiritof“buildbackbetter,”thispaperexamineshowintegratingevaluationinthedesignandimplementationofthesenewcleanenergypoliciescanfacilitatethelearningnecessaryforpolicymakerstomakepolicybetterovertime.Itdrawslessonsfromtwocasestudies:(1)oninstitutionalizingevaluationbasedontheexperiencewithregulatoryreview,and(2)onconductingevaluationbasedontheresearchliteratureassessingthe2009RecoveryAct’scleanenergyprograms.Thepaperidentifiesinrecentlegislationtheprogramsandtheircharacteristicsamenabletovariousevaluationmethodologies.Thepaper

closeswithrecommendationsforacleanenergyprogramevaluationframework

thatwouldenableimplementationofclimate-orientedlearningagendasunderthe

Evidence-BasedPolicymakingAct.

LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluationiv

Contents

1.Introduction1

2.InstitutionalizingProgramEvaluation:LessonsfromRegulatoryReview3

2.1.DemonstratingtheCompellingNeedforPolicyAction3

2.2.StandardizingEvaluationMethodsandProcess4

2.3.PromotingaCultureforRetrospectiveAnalysisandIterativePolicymaking5

3.ConductingProgramEvaluations:LessonsfromAcademicResearchofthe

AmericanRecoveryandReinvestmentActof20096

3.1.LearningthroughRandomization:TheWeatherizationAssistanceProgram7

3.2.ComparingWinnersandLosers:SmallBusinessInnovationResearchGrants9

3.3.ExploitingStateVariation:StateEnergy-EfficientApplianceRebateProgram11

3.4.ExploitingFormulaAllocations:EmploymentImpactsofCleanEnergy

Programs12

4.PlanningforCleanEnergyProgramEvaluations14

4.1.DevelopCross-cuttingandAgency-specificGuidanceforPerformance

Evaluations14

4.2.IdentifyPriorityOutcomestoEvaluate14

4.3.IdentifyPoliciesandProgramswithSignificantLearningPotential15

4.4.DevelopEvaluationPlansandDataProtocols15

4.5.EnsureEvaluationPlanTransparency16

4.6.PromoteaPerformanceEvaluationCulture17

5.ConclusionsandPolicyImplications18

6.References19

LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation1

1.Introduction

In2021,theU.S.Governmentpledgedtoreduceitsgreenhousegasemissions

50-52percentbelowtheir2005levelsby2030andtoachieveeconomy-widenet-zeroemissionsby2050.Tomakeprogressontheseemissiongoals,theBidenAdministrationandCongresshaveadvancedanambitiousprogramto“buildbackbetter”throughtheInfrastructureInvestmentandJobsAct,1theCHIPSandScienceAct,2andtheInflationReductionAct.3Theselawsbuildondecadesofcleanenergypolicyatthefederal,state,andlocallevels,including:taxcredits,accelerateddepreciation,taxexemptions,rebates,grants,loans,loanguarantees,andregulatoryandinformationdisclosurerequirements.Inthespiritofbuildbackbetter,integratingprogramevaluationinthedesignandimplementationofnewcleanenergypoliciescanfacilitatethelearningnecessaryforpolicymakerstomakepolicybetterovertime:increasingthelikelihoodofachievingclimategoalsandreducingthecostsofdoingso.

Threekeycharacteristicsoftheclimatechallengeillustratethesignificantvalueinevaluatingcleanenergypolicyperformance.First,transformingthemodernenergyeconomytocombatclimatechangewillrequireunprecedenteddepthandbreadthofpolicyaction.Pastpolicyexperienceslikelyprovideincompleteinsightsforhowtodesignambitiousdecarbonizationpolicies.Acontinuouslearningprocesswillbeneededaswedeploynewtechnologiesandpolicystrategies.Second,manytechnological,environmental,social,andeconomicuncertaintiescharacterizingcleanenergywillberesolvedbypolicypractice.Somepolicieswillturnoutmoreeffectivethanexpected,whileotherslesseffectivethanexpected.Policyexperimentationreducinguncertaintywillprovidethefoundationformakingpolicybetterovertime.Third,thepolicyresponsetoclimatechangewillcontinuetooccurthroughaseriesofbillsandregulationsovertime:annualappropriations;taxextenderpackages;agriculture,energy,andtransportationbills;reconciliationbills;otherlegislation;regulatorystandards,andmore.Iterativepolicyprocessescreateopportunitiesforusinglessonstoinformandimprovefuturepolicydesign.

Understandingthecausalimpactsofpolicy—e.g.,howdidacleanenergypolicydirectlychangeemissions,energyinvestment,employment,publichealth,etc.—iscriticalforimprovingpolicydesignandimplementationovertime.AstheCommissiononEvidence-BasedPolicymaking(2017)noted,“[p]olicymakersmusthavegoodinformationonwhichtobasetheirdecisionsaboutimprovingtheviabilityandeffectivenessofgovernmentprogramsandpolicies.Today,toolittleevidenceisproducedtomeetthisneed”(p.1).Despitethedearthofadequateevidence,theCommissionemphasizedaconstructivepathforward:“[m]oderntechnologyandstatisticalmethods,combinedwithtransparencyandastronglegalframework,createtheopportunitytousedataforevidencebuildinginwaysthatwerenotpossibleinthepast”(p.1).TheFoundationsforEvidence-BasedPolicymakingActof2018

1P.L.117-58.

2P.L.117-167.

3P.L.117-169.

LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation3

2.InstitutionalizingProgramEvaluation:LessonsfromRegulatoryReview

Since1981,RepublicanandDemocraticAdministrationshaverequiredregulatoryagenciestoestimatetheprospectivebenefitsandcostsoftheirmajorregulatoryproposalsasapartoftheregulatoryreviewprocess.5Environmentalandenergyregulationsrepresentadisproportionateshareoffederalregulatoryproposals.Over2007-2016,theEnvironmentalProtectionAgency(EPA),DepartmentofEnergy,andDepartmentofTransportation(inrulesjointly-issuedwithEPA)issuedmorethanhalfofallmajorfederalregulations(OMB2018).Theseenvironmentalandenergyrulesrepresentmorethan85percentoftheprospectivebenefitsand75percentoftheprospectivecostsofmajorFederalregulations(Aldy2020b).Theexperiencewithregulatoryreviewholdsthreemajorlessonsforinstitutionalizingcleanenergyprogramevaluation.

2.1.DemonstratingtheCompellingNeedforPolicy

Action

Policymakerscancommunicatemoreeffectivelywhyapolicyactionisinournation’sinterestbymarshallingevidenceoftheimpactsofthatpolicyaction.Forexample,thecurrentregulatoryreviewprocessrequiresfederalagenciestodemonstratethattheirregulationsaddressa“compellingneed,suchasmaterialfailuresofprivatemarketstoprotectorimprovethehealthandsafetyofthepublic,theenvironment,orthewell-beingoftheAmericanpeople”(E.O.12866,§1(a)).Inarulemaking,aregulatoryagencyidentifiesthemarketfailure,highlightshowtheproposedregulatoryactionaddressesthemarketfailureandwhyitispreferredtoalternativeapproaches,andshowshowthebenefitsjustifythecosts.The“compellingneed”standardthatmotivatesregulatoryactionswouldreasonablyapplytoanypublicpolicy,includingspendingandtaxexpenditures,thatpromotescleanenergyinvestmenttocombatclimatechange.Spendingandtaxpolicythatdeliveronthesameobjectiveasaregulatoryactionmeritacomparableapproachtoevaluation.

Virtuallyallcleanenergyspendingeffectivelysubsidizesinvestmentinequipmentandcapitalthatcouldbemandatedunderregulatorystandardstoaddressclimatechange-relatedmarketfailures.Forexample,furnaceshavebeensubjecttominimumenergyefficiencystandards,6qualifiedforenergy-efficientappliancerebates(HoudeandAldy

5See:E.O.12291,46FederalRegister13193,February17,1981;andE.O.12866,58FederalRegister51735,October4,1993.

6Referto“EnergyConservationProgramforConsumerProducts:EnergyConservationStandardsforResidentialFurnacesandBoilers,”72FederalRegister65136,November19,2007.

4

2017),andbeeneligiblefortaxcredits.7Windpowerhasbeeneligibleforproductiontaxcredits,§1603grants,and§1705loanguarantees(Aldy2013),andplayedakeyroleindeterminingemissionstandardsunderEPA’sCleanPowerPlan(Fowlieetal.2014).

Justasanalysiscaninformtheselectionanddesignofpreferredregulatoryoptions,evaluationsofspendingandtaxprogramscanenhancepolicymakerunderstandingofthemosteffectiveinstrumentsfordeliveringoncleanenergyobjectives.Producingsuchanalysestaketimeandresources;thus,theregulatoryreviewrequirementsapplyonlytothelargestregulatoryactions—thosewithatleast$100millioninannualeconomicimpacts—wherethevalueofinformationgeneratedislikelytobegreatest.The$100millionimpactthresholdthattriggersafull-blownanalysisofregulatoryimpactsismodestrelativetothesizeofmajorcleanenergytaxandspendingprogramsinrecentlaws(e.g.,theInfrastructureInvestmentandJobsActandtheInflationReductionAct).Theseregulatoryanalysesmatterintheregulatory

developmentprocess:theyinformchangestotheruleaftertheproposalstage,and

theyarerequiredtobesubmittedtoCongresswithallmajorfinalrulesunderthe

CongressionalReviewAct.

2.2.StandardizingEvaluationMethodsand

Process

Theevaluationofcleanenergyprogramscandrawfromexistingguidanceintheregulatoryspace.Theycouldalsodrawfromprogramevaluationproceduresappliedtonon-climatepoliciesinotherpartsofthefederalgovernment,suchastheDepartmentsofHealthandHumanServicesandLabor.Thedevelopmentofstandardproceduresforevaluatingcleanenergyspendingprogramscouldreducethetimeandresourcerequirementsforplanningandexecutingprogramevaluations.Suchstandardizedproceduresandguidancecouldfallunderadepartment’slearningagendaandplandevelopmentundertheEvidence-BasedPolicymakingAct.

Forexample,OMB(2003)issuesguidancetoregulatoryagenciesontheconductofregulatoryimpactanalyses.Theguidanceaddressestheeconomicprinciplesandsomecommoneconomicassumptionsthatshouldinformagencyestimationofbenefitsandcosts.Theguidanceemphasizesboththeexpectedrigorofanalysis—andtheimportanceofrelyingonpeer-reviewedliterature—aswellasthecommunicationoftheresultsoftheanalysistoenableaclearunderstandingbypolicymakers,stakeholders,andthepublic.Suchregulatoryimpactanalysesoftengobeyondsimplytallyingandcomparingbenefitsandcosts;theyalsopresentestimatedemploymentandcompetitivenessimpacts,ancillarybenefitsbeyondthetargetoftherule,aswellasthedistributionanduncertaintycharacterizingtheimpactsoftheregulatoryaction(Aldyetal.2021,Robinsonetal.2016).

Severalregulatoryagencieshavedevelopedtheirownguidancefortheconduct

ofprospectiveregulatoryimpactanalyses,suchasEPA(2014)andDepartmentof

7P.L.111-5,section1121.

LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation5

HealthandHumanServices(2016).TheDepartmentofTransportation(2021)issuesregularupdatesofitsapproachforvaluingreductionsinmortalityriskthroughitsregulatoryauthorities.TheBidenAdministrationrelaunchedtheinteragencyworkinggrouponthesocialcostofgreenhousegases,whichprovidesestimatesofthesocialcostofcarbon,methane,andnitrousoxidethatcanmonetizethebenefitsofreducinggreenhousegasemissionsthroughregulationandotherFederalactions.8Toimproveunderstandingoftheenvironmentaljusticeimplicationsoffederalinvestments,OMB(2021b)issuedguidanceforhowtocalculateandreportthebenefitsofsuchactionsundertheJustice40Initiative.Theseguidancedocumentstypicallyhaveundergonepeerreview,suchasthroughtheEPAScienceAdvisoryBoard,theNationalAcademies,andotherprocesses.

2.3.PromotingaCultureforRetrospective

AnalysisandIterativePolicymaking

ThesunsetprovisionsforcleanenergyspendingandtaxexpendituresthroughtheInfrastructureInvestmentandJobsActandtheInflationReductionActcreatewindowsofopportunitiesforhowlookingbackatprogramperformancecaninformsubsequentpolicyactions.Likewise,theiterativeapproachtoregulationscreatesnaturalopportunitiesforexpostevaluationofregulatoryperformance.Anumberofregulatoryauthoritiesoperatethroughanupdatingcycle,suchasEPAairqualitystandards,9DepartmentofEnergyapplianceefficiencystandards,10andDepartmentofTransportationfueleconomystandards11Lookingbackatregulatoryperformanceprovidesanopportunitytolearnabouttheefficacyofruledesignandcompliance

strategiesbyregulatedentities,andsignificantlyenhancesknowledgeofregulatoryimpactsrelativetotheprospectiveanalysisdevelopedattherule-writingstage(Greenstone2009,Sunstein2011,Aldy2014a).

Regulatoryagencies’practicewithrespecttoretrospectivereviewofexistingregulations—whichwouldbeanalogoustoacleanenergyprogramevaluationframework—hasyieldedamixedrecord(Harrington2006,Coglianese2013,Aldy2014a,Bull2015,Cropperetal.2017).EveryadministrationdatingbacktotheCarterAdministrationhascalledonregulatoryagenciestoreviewtheirexistingrules,butthefailuretomeaningfullyinstitutionalizeretrospectivereview,buildacultureofsuchreviewwithinagencies,andappropriatemoniestoensuretheresourcesareavailabletoconductsuchreviews,haveunderminedtheeffectivenessofsuchWhiteHousedirectives.Agencieshavereceivedguidanceonhowtoplanforexpostevaluationsofregulationsduringtherule-makingstage,butfewhavemovedforwardwithsuchstrategies(ACUS2014,Aldy2014a,Cropperetal.2018).

8E.O.13990,86FederalRegister7037,January25,2021.

942USC7409(d).

1042USC6313(a)(6(C).

1149USC32902(k)(3).

6

Promotingacultureforretrospectiveanalysisstartswithinstitutionalizingitsusebypoliticalleadersandthepolicyprocess.Ifthereisneitheranobviousaudiencefortheanalysisnoraprocessforusingtheoutputsoftheanalysisforimprovingpolicy,thenagencieswillconsidersuchevaluationsofpoliciesinpracticealowpriority.DuringtheObamaAdministration’sretrospectiverevieweffort,agenciespostedonlinethelistofrulesunderreviewandtheresultsofthosereviews.Overtime,however,theseperiodicupdatesbyregulatoryagenciesreceivedlessattentionfromtheWhiteHouse,stakeholders,andthemedia(Aldy2014a).

3.ConductingProgramEvaluations:LessonsfromAcademicResearchoftheAmericanRecoveryandReinvestmentActof200912

Thechallengeinlearningaboutpolicyimpactsliesinidentifyingtheappropriatedataandimplementingtherigorousevaluationtoolstoproducearobustunderstandingoftheimpactofcleanenergyprograms.Aprogramevaluationismuchmorethansimplyreportingthenumberofparticipatingfirmsorhouseholdsinaprogram,ortakingsuchacountandmultiplyingitbyanengineering-basedoutcome,suchasexpectedenergysavings.Empiricalsocialscientistshavedevelopedanarrayofevaluationtools—fieldexperimentsthatimplementrandomizedcontroltrialsaswellasquasi-experimentalmethodsthatattempttoreplicatethefundamentalcharacteristicsofarandomizedcontroltrial(e.g.,AngristandPischke2008,LeeandLemieux2010,DiNardoandLee2011,ImbensandRubin2015)—toestimatethevariousoutcomescausedbyaprogramorpolicyintervention.

Estimatingthecausalimpactofacleanenergyprogramrequiresinformationaboutboththosewhoparticipateintheprogramandthosewhodonot.Simplycollectingdatafromthosereceivinggrantsorclaimingtaxcreditswouldbeinsufficient;rigorousanalysisalsodependsondataaboutthosehouseholdsandbusinessesthataresimilartothesubsidyrecipientsbutarenotrecipients.Thesenon-participantdataprovidethebasisforthecounterfactual—whatwouldhavehappenedintheabsenceofthepolicy—thatenablesanalysisofprogramperformance.Ineffect,dataonprogramparticipantsrepresentsinformationona“treatment”groupanddataonnon-participantsrepresentstheinformationona“control”group,justasinarandomizedexperimenttoevaluatetheimpactsofadrugorvaccine.

12ForgeneralassessmentsoftheRecoveryAct’scleanenergypackage,refertoAldy

(2013),Carley(2016),andBarbier(2020).

LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation7

TheambitiousspendingandpolicyexperimentationundertheAmericanRecoveryandReinvestmentActof2009hasbeensubjecttoextensiveprogramevaluationsintheacademicliterature.TheRecoveryActprovidedabout$100billionincleanenergyspendingandtaxexpenditurestopromotedeploymentoflow-carbontechnologiesandspureconomicactivity(Aldy2013,CEA2016).TheenergylandscapehaschangedramaticallysincetheRecoveryActwassignedintolawinFebruary2009:utility-scalesolarpowergenerationismorethan100timesgreaterandwindpowergenerationisnearlyseventimesgreatertodaythanin2008(EIAn.d.).PolicymakerscoulddrawfromthispastexperienceinevaluatingRecoveryActprogramstoapplyprogramevaluationmethodstonewcleanenergypoliciesgoingforward.

Thissectionpresentsillustrationsofmethodsforconductingprogramevaluationsthatcrediblyestimatethecausalimpactsofcleanenergyprograms.IshowhoweachofthesemethodscanbeappliedusingstudiesoffourcleanenergyprogramssupportedbytheRecoveryAct.Ineachcase,Iopenbydescribingthepotentialbiasesthatmayresultinmisleadingclaimsofprogramperformancebasedonprogramparticipationratesandengineeringassumptions.ThenIdescribetheauthors’studyandapplicationofastatisticalmethodthatcanaccountforandminimizethesebiases.Foreachcasestudy,Inotehowthestudy’smethodcouldinformfutureprogramevaluationsforspecificcleanenergyprogramsintheInfrastructureInvestmentandJobsActandthe

InflationReductionAct.

3.1.LearningthroughRandomization:The

WeatherizationAssistanceProgram

The2009RecoveryActprovidednearly$5billionoffundingforWeatherizationAssistancePrograms(WAP)implementedatthestateandlocallevels.Theseweatherizationprogramsfinanceenergy-efficiencyandconservationimprovementsintheresidentialdwellingsofhouseholdswithincomebelowaspecifiedthreshold.

3.1.1.PotentialBiases

TheDepartmentofEnergyhastypicallyestimatedthereducedenergydemandandassociatedenergybillsavingsofweatherizationthroughengineering-basedevaluations(e.g.,OakRidgeNationalLaboratory2015).Engineering-basedanalysessufferfromthreepotentialshortcomings.First,theweatherizationinvestmentinpracticemayyielddifferentenergysavingsbecauseofsimplifyingassumptionsintheengineeringmodelorvariationsinthequalityofthecontractorsundertakingthework.Second,individualsoptingtoparticipateinaweatherizationprogrammaybefundamentallydifferent—perhapstheyaremoreenergyorenvironmentallyconscious—fromthegeneralpopulation,andtheirbehaviormaynotberepresentative.Finally,weatherizationlowersthecostofanenergyservice—suchasheatingahometoagiventemperature.Residentsofaweatherizedhomemayadjustthethermostat,orbuymoreenergy-consumingappliances,andthisso-called“reboundeffect”wouldoffsetsomeoftheenergysavings.

8

3.1.2.AnEvaluationStrategytoAddresstheBiases

Inpolicydebates,therehasoccasionallybeenatensionbetweenadvocatesofprogramevaluation—whoargueforimplementingapublicprogramthrougharandomizedcontroltrialtoenablerigorousassessment—andagencystafforpoliticianswhoclaimthattheprogramshouldbeavailabletoeveryonewhoiseligible.Fowlieetal.(2018)developedacleverwayofresolvingthistension.WorkingwithalocalweatherizationprograminMichigan,theydevelopedarandomizedencouragementprogram—theydidnotalterwhowaseligibleforthismeans-testedprogram,buttheyrandomizedwhoreceivedinformationandtechnicalassistanceforapplyingforweatherizationaid.Thisrandomizationsatisfiedpoliticalconstraints,andalsoallowedtheresearcherstoensurethattheirresultswerenotconfoundedby,forexample,self-selectionintotheprogrambythosemorelikelytobeenergy-conscious.They

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论