




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LearningHowtoBuildBack
BetterthroughCleanEnergy
PolicyEvaluation
JosephE.Aldy
WorkingPaper22-15
August2022
ResourcesfortheFuturei
AbouttheAuthor/Authors
JosephE.AldyisauniversityfellowatResourcesfortheFutureandaProfessorofthePracticeofPublicPolicyatHarvard’sKennedySchool.Hisresearchfocusesonclimatechangepolicy,energypolicy,andmortalityriskvaluation.AldyalsocurrentlyservesasthefacultychairoftheRegulatoryPolicyProgramattheHarvardKennedySchool.In2009–2010,heservedasthespecialassistanttothepresidentforenergyandtheenvironment,reportingthroughboththeWhiteHouseNationalEconomicCouncilandtheOfficeofEnergyandClimateChange.
Acknowledgements
FantasticresearchassistancewasprovidedbyMichaelChen,EmilyFry,CharlesHua,MichelleLi,ConnorMcRobert,EmMurdock,KenNorris,SiddShrikanth,andDanStuart.IhavebenefittedfromexcellentfeedbackfromDanielleArostegui,JulieGohlke,WesLook,KevinRennert,MorganRote,BeiaSpiller,andNatashaVidangos,seminarattendeesatFloridaState,MIT,ResourcesfortheFuture,UniversityofHouston,andtheASSAannualconference.ThisresearchhasbeensupportedbyEnvironmentalDefenseFund,HarvardUniversityCenterfortheEnvironment,HKSMossavar-RahmaniCenterforBusinessandGovernment,andHKSCenterforPublicLeadership.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluationii
AboutRFF
ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutioninWashington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFiscommittedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.
Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesofinformationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.
SharingOurWork
OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit
/licenses/by-nc-nd/4.0/
.
iii
Abstract
TheInfrastructureInvestmentandJobsAct,theCHIPSandScienceAct,andtheInflationReductionActauthorizedandappropriatedunprecedentedspendingandtaxexpenditurestodecarbonizetheAmericaneconomy.Inthespiritof“buildbackbetter,”thispaperexamineshowintegratingevaluationinthedesignandimplementationofthesenewcleanenergypoliciescanfacilitatethelearningnecessaryforpolicymakerstomakepolicybetterovertime.Itdrawslessonsfromtwocasestudies:(1)oninstitutionalizingevaluationbasedontheexperiencewithregulatoryreview,and(2)onconductingevaluationbasedontheresearchliteratureassessingthe2009RecoveryAct’scleanenergyprograms.Thepaperidentifiesinrecentlegislationtheprogramsandtheircharacteristicsamenabletovariousevaluationmethodologies.Thepaper
closeswithrecommendationsforacleanenergyprogramevaluationframework
thatwouldenableimplementationofclimate-orientedlearningagendasunderthe
Evidence-BasedPolicymakingAct.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluationiv
Contents
1.Introduction1
2.InstitutionalizingProgramEvaluation:LessonsfromRegulatoryReview3
2.1.DemonstratingtheCompellingNeedforPolicyAction3
2.2.StandardizingEvaluationMethodsandProcess4
2.3.PromotingaCultureforRetrospectiveAnalysisandIterativePolicymaking5
3.ConductingProgramEvaluations:LessonsfromAcademicResearchofthe
AmericanRecoveryandReinvestmentActof20096
3.1.LearningthroughRandomization:TheWeatherizationAssistanceProgram7
3.2.ComparingWinnersandLosers:SmallBusinessInnovationResearchGrants9
3.3.ExploitingStateVariation:StateEnergy-EfficientApplianceRebateProgram11
3.4.ExploitingFormulaAllocations:EmploymentImpactsofCleanEnergy
Programs12
4.PlanningforCleanEnergyProgramEvaluations14
4.1.DevelopCross-cuttingandAgency-specificGuidanceforPerformance
Evaluations14
4.2.IdentifyPriorityOutcomestoEvaluate14
4.3.IdentifyPoliciesandProgramswithSignificantLearningPotential15
4.4.DevelopEvaluationPlansandDataProtocols15
4.5.EnsureEvaluationPlanTransparency16
4.6.PromoteaPerformanceEvaluationCulture17
5.ConclusionsandPolicyImplications18
6.References19
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation1
1.Introduction
In2021,theU.S.Governmentpledgedtoreduceitsgreenhousegasemissions
50-52percentbelowtheir2005levelsby2030andtoachieveeconomy-widenet-zeroemissionsby2050.Tomakeprogressontheseemissiongoals,theBidenAdministrationandCongresshaveadvancedanambitiousprogramto“buildbackbetter”throughtheInfrastructureInvestmentandJobsAct,1theCHIPSandScienceAct,2andtheInflationReductionAct.3Theselawsbuildondecadesofcleanenergypolicyatthefederal,state,andlocallevels,including:taxcredits,accelerateddepreciation,taxexemptions,rebates,grants,loans,loanguarantees,andregulatoryandinformationdisclosurerequirements.Inthespiritofbuildbackbetter,integratingprogramevaluationinthedesignandimplementationofnewcleanenergypoliciescanfacilitatethelearningnecessaryforpolicymakerstomakepolicybetterovertime:increasingthelikelihoodofachievingclimategoalsandreducingthecostsofdoingso.
Threekeycharacteristicsoftheclimatechallengeillustratethesignificantvalueinevaluatingcleanenergypolicyperformance.First,transformingthemodernenergyeconomytocombatclimatechangewillrequireunprecedenteddepthandbreadthofpolicyaction.Pastpolicyexperienceslikelyprovideincompleteinsightsforhowtodesignambitiousdecarbonizationpolicies.Acontinuouslearningprocesswillbeneededaswedeploynewtechnologiesandpolicystrategies.Second,manytechnological,environmental,social,andeconomicuncertaintiescharacterizingcleanenergywillberesolvedbypolicypractice.Somepolicieswillturnoutmoreeffectivethanexpected,whileotherslesseffectivethanexpected.Policyexperimentationreducinguncertaintywillprovidethefoundationformakingpolicybetterovertime.Third,thepolicyresponsetoclimatechangewillcontinuetooccurthroughaseriesofbillsandregulationsovertime:annualappropriations;taxextenderpackages;agriculture,energy,andtransportationbills;reconciliationbills;otherlegislation;regulatorystandards,andmore.Iterativepolicyprocessescreateopportunitiesforusinglessonstoinformandimprovefuturepolicydesign.
Understandingthecausalimpactsofpolicy—e.g.,howdidacleanenergypolicydirectlychangeemissions,energyinvestment,employment,publichealth,etc.—iscriticalforimprovingpolicydesignandimplementationovertime.AstheCommissiononEvidence-BasedPolicymaking(2017)noted,“[p]olicymakersmusthavegoodinformationonwhichtobasetheirdecisionsaboutimprovingtheviabilityandeffectivenessofgovernmentprogramsandpolicies.Today,toolittleevidenceisproducedtomeetthisneed”(p.1).Despitethedearthofadequateevidence,theCommissionemphasizedaconstructivepathforward:“[m]oderntechnologyandstatisticalmethods,combinedwithtransparencyandastronglegalframework,createtheopportunitytousedataforevidencebuildinginwaysthatwerenotpossibleinthepast”(p.1).TheFoundationsforEvidence-BasedPolicymakingActof2018
1P.L.117-58.
2P.L.117-167.
3P.L.117-169.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation3
2.InstitutionalizingProgramEvaluation:LessonsfromRegulatoryReview
Since1981,RepublicanandDemocraticAdministrationshaverequiredregulatoryagenciestoestimatetheprospectivebenefitsandcostsoftheirmajorregulatoryproposalsasapartoftheregulatoryreviewprocess.5Environmentalandenergyregulationsrepresentadisproportionateshareoffederalregulatoryproposals.Over2007-2016,theEnvironmentalProtectionAgency(EPA),DepartmentofEnergy,andDepartmentofTransportation(inrulesjointly-issuedwithEPA)issuedmorethanhalfofallmajorfederalregulations(OMB2018).Theseenvironmentalandenergyrulesrepresentmorethan85percentoftheprospectivebenefitsand75percentoftheprospectivecostsofmajorFederalregulations(Aldy2020b).Theexperiencewithregulatoryreviewholdsthreemajorlessonsforinstitutionalizingcleanenergyprogramevaluation.
2.1.DemonstratingtheCompellingNeedforPolicy
Action
Policymakerscancommunicatemoreeffectivelywhyapolicyactionisinournation’sinterestbymarshallingevidenceoftheimpactsofthatpolicyaction.Forexample,thecurrentregulatoryreviewprocessrequiresfederalagenciestodemonstratethattheirregulationsaddressa“compellingneed,suchasmaterialfailuresofprivatemarketstoprotectorimprovethehealthandsafetyofthepublic,theenvironment,orthewell-beingoftheAmericanpeople”(E.O.12866,§1(a)).Inarulemaking,aregulatoryagencyidentifiesthemarketfailure,highlightshowtheproposedregulatoryactionaddressesthemarketfailureandwhyitispreferredtoalternativeapproaches,andshowshowthebenefitsjustifythecosts.The“compellingneed”standardthatmotivatesregulatoryactionswouldreasonablyapplytoanypublicpolicy,includingspendingandtaxexpenditures,thatpromotescleanenergyinvestmenttocombatclimatechange.Spendingandtaxpolicythatdeliveronthesameobjectiveasaregulatoryactionmeritacomparableapproachtoevaluation.
Virtuallyallcleanenergyspendingeffectivelysubsidizesinvestmentinequipmentandcapitalthatcouldbemandatedunderregulatorystandardstoaddressclimatechange-relatedmarketfailures.Forexample,furnaceshavebeensubjecttominimumenergyefficiencystandards,6qualifiedforenergy-efficientappliancerebates(HoudeandAldy
5See:E.O.12291,46FederalRegister13193,February17,1981;andE.O.12866,58FederalRegister51735,October4,1993.
6Referto“EnergyConservationProgramforConsumerProducts:EnergyConservationStandardsforResidentialFurnacesandBoilers,”72FederalRegister65136,November19,2007.
4
2017),andbeeneligiblefortaxcredits.7Windpowerhasbeeneligibleforproductiontaxcredits,§1603grants,and§1705loanguarantees(Aldy2013),andplayedakeyroleindeterminingemissionstandardsunderEPA’sCleanPowerPlan(Fowlieetal.2014).
Justasanalysiscaninformtheselectionanddesignofpreferredregulatoryoptions,evaluationsofspendingandtaxprogramscanenhancepolicymakerunderstandingofthemosteffectiveinstrumentsfordeliveringoncleanenergyobjectives.Producingsuchanalysestaketimeandresources;thus,theregulatoryreviewrequirementsapplyonlytothelargestregulatoryactions—thosewithatleast$100millioninannualeconomicimpacts—wherethevalueofinformationgeneratedislikelytobegreatest.The$100millionimpactthresholdthattriggersafull-blownanalysisofregulatoryimpactsismodestrelativetothesizeofmajorcleanenergytaxandspendingprogramsinrecentlaws(e.g.,theInfrastructureInvestmentandJobsActandtheInflationReductionAct).Theseregulatoryanalysesmatterintheregulatory
developmentprocess:theyinformchangestotheruleaftertheproposalstage,and
theyarerequiredtobesubmittedtoCongresswithallmajorfinalrulesunderthe
CongressionalReviewAct.
2.2.StandardizingEvaluationMethodsand
Process
Theevaluationofcleanenergyprogramscandrawfromexistingguidanceintheregulatoryspace.Theycouldalsodrawfromprogramevaluationproceduresappliedtonon-climatepoliciesinotherpartsofthefederalgovernment,suchastheDepartmentsofHealthandHumanServicesandLabor.Thedevelopmentofstandardproceduresforevaluatingcleanenergyspendingprogramscouldreducethetimeandresourcerequirementsforplanningandexecutingprogramevaluations.Suchstandardizedproceduresandguidancecouldfallunderadepartment’slearningagendaandplandevelopmentundertheEvidence-BasedPolicymakingAct.
Forexample,OMB(2003)issuesguidancetoregulatoryagenciesontheconductofregulatoryimpactanalyses.Theguidanceaddressestheeconomicprinciplesandsomecommoneconomicassumptionsthatshouldinformagencyestimationofbenefitsandcosts.Theguidanceemphasizesboththeexpectedrigorofanalysis—andtheimportanceofrelyingonpeer-reviewedliterature—aswellasthecommunicationoftheresultsoftheanalysistoenableaclearunderstandingbypolicymakers,stakeholders,andthepublic.Suchregulatoryimpactanalysesoftengobeyondsimplytallyingandcomparingbenefitsandcosts;theyalsopresentestimatedemploymentandcompetitivenessimpacts,ancillarybenefitsbeyondthetargetoftherule,aswellasthedistributionanduncertaintycharacterizingtheimpactsoftheregulatoryaction(Aldyetal.2021,Robinsonetal.2016).
Severalregulatoryagencieshavedevelopedtheirownguidancefortheconduct
ofprospectiveregulatoryimpactanalyses,suchasEPA(2014)andDepartmentof
7P.L.111-5,section1121.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation5
HealthandHumanServices(2016).TheDepartmentofTransportation(2021)issuesregularupdatesofitsapproachforvaluingreductionsinmortalityriskthroughitsregulatoryauthorities.TheBidenAdministrationrelaunchedtheinteragencyworkinggrouponthesocialcostofgreenhousegases,whichprovidesestimatesofthesocialcostofcarbon,methane,andnitrousoxidethatcanmonetizethebenefitsofreducinggreenhousegasemissionsthroughregulationandotherFederalactions.8Toimproveunderstandingoftheenvironmentaljusticeimplicationsoffederalinvestments,OMB(2021b)issuedguidanceforhowtocalculateandreportthebenefitsofsuchactionsundertheJustice40Initiative.Theseguidancedocumentstypicallyhaveundergonepeerreview,suchasthroughtheEPAScienceAdvisoryBoard,theNationalAcademies,andotherprocesses.
2.3.PromotingaCultureforRetrospective
AnalysisandIterativePolicymaking
ThesunsetprovisionsforcleanenergyspendingandtaxexpendituresthroughtheInfrastructureInvestmentandJobsActandtheInflationReductionActcreatewindowsofopportunitiesforhowlookingbackatprogramperformancecaninformsubsequentpolicyactions.Likewise,theiterativeapproachtoregulationscreatesnaturalopportunitiesforexpostevaluationofregulatoryperformance.Anumberofregulatoryauthoritiesoperatethroughanupdatingcycle,suchasEPAairqualitystandards,9DepartmentofEnergyapplianceefficiencystandards,10andDepartmentofTransportationfueleconomystandards11Lookingbackatregulatoryperformanceprovidesanopportunitytolearnabouttheefficacyofruledesignandcompliance
strategiesbyregulatedentities,andsignificantlyenhancesknowledgeofregulatoryimpactsrelativetotheprospectiveanalysisdevelopedattherule-writingstage(Greenstone2009,Sunstein2011,Aldy2014a).
Regulatoryagencies’practicewithrespecttoretrospectivereviewofexistingregulations—whichwouldbeanalogoustoacleanenergyprogramevaluationframework—hasyieldedamixedrecord(Harrington2006,Coglianese2013,Aldy2014a,Bull2015,Cropperetal.2017).EveryadministrationdatingbacktotheCarterAdministrationhascalledonregulatoryagenciestoreviewtheirexistingrules,butthefailuretomeaningfullyinstitutionalizeretrospectivereview,buildacultureofsuchreviewwithinagencies,andappropriatemoniestoensuretheresourcesareavailabletoconductsuchreviews,haveunderminedtheeffectivenessofsuchWhiteHousedirectives.Agencieshavereceivedguidanceonhowtoplanforexpostevaluationsofregulationsduringtherule-makingstage,butfewhavemovedforwardwithsuchstrategies(ACUS2014,Aldy2014a,Cropperetal.2018).
8E.O.13990,86FederalRegister7037,January25,2021.
942USC7409(d).
1042USC6313(a)(6(C).
1149USC32902(k)(3).
6
Promotingacultureforretrospectiveanalysisstartswithinstitutionalizingitsusebypoliticalleadersandthepolicyprocess.Ifthereisneitheranobviousaudiencefortheanalysisnoraprocessforusingtheoutputsoftheanalysisforimprovingpolicy,thenagencieswillconsidersuchevaluationsofpoliciesinpracticealowpriority.DuringtheObamaAdministration’sretrospectiverevieweffort,agenciespostedonlinethelistofrulesunderreviewandtheresultsofthosereviews.Overtime,however,theseperiodicupdatesbyregulatoryagenciesreceivedlessattentionfromtheWhiteHouse,stakeholders,andthemedia(Aldy2014a).
3.ConductingProgramEvaluations:LessonsfromAcademicResearchoftheAmericanRecoveryandReinvestmentActof200912
Thechallengeinlearningaboutpolicyimpactsliesinidentifyingtheappropriatedataandimplementingtherigorousevaluationtoolstoproducearobustunderstandingoftheimpactofcleanenergyprograms.Aprogramevaluationismuchmorethansimplyreportingthenumberofparticipatingfirmsorhouseholdsinaprogram,ortakingsuchacountandmultiplyingitbyanengineering-basedoutcome,suchasexpectedenergysavings.Empiricalsocialscientistshavedevelopedanarrayofevaluationtools—fieldexperimentsthatimplementrandomizedcontroltrialsaswellasquasi-experimentalmethodsthatattempttoreplicatethefundamentalcharacteristicsofarandomizedcontroltrial(e.g.,AngristandPischke2008,LeeandLemieux2010,DiNardoandLee2011,ImbensandRubin2015)—toestimatethevariousoutcomescausedbyaprogramorpolicyintervention.
Estimatingthecausalimpactofacleanenergyprogramrequiresinformationaboutboththosewhoparticipateintheprogramandthosewhodonot.Simplycollectingdatafromthosereceivinggrantsorclaimingtaxcreditswouldbeinsufficient;rigorousanalysisalsodependsondataaboutthosehouseholdsandbusinessesthataresimilartothesubsidyrecipientsbutarenotrecipients.Thesenon-participantdataprovidethebasisforthecounterfactual—whatwouldhavehappenedintheabsenceofthepolicy—thatenablesanalysisofprogramperformance.Ineffect,dataonprogramparticipantsrepresentsinformationona“treatment”groupanddataonnon-participantsrepresentstheinformationona“control”group,justasinarandomizedexperimenttoevaluatetheimpactsofadrugorvaccine.
12ForgeneralassessmentsoftheRecoveryAct’scleanenergypackage,refertoAldy
(2013),Carley(2016),andBarbier(2020).
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation7
TheambitiousspendingandpolicyexperimentationundertheAmericanRecoveryandReinvestmentActof2009hasbeensubjecttoextensiveprogramevaluationsintheacademicliterature.TheRecoveryActprovidedabout$100billionincleanenergyspendingandtaxexpenditurestopromotedeploymentoflow-carbontechnologiesandspureconomicactivity(Aldy2013,CEA2016).TheenergylandscapehaschangedramaticallysincetheRecoveryActwassignedintolawinFebruary2009:utility-scalesolarpowergenerationismorethan100timesgreaterandwindpowergenerationisnearlyseventimesgreatertodaythanin2008(EIAn.d.).PolicymakerscoulddrawfromthispastexperienceinevaluatingRecoveryActprogramstoapplyprogramevaluationmethodstonewcleanenergypoliciesgoingforward.
Thissectionpresentsillustrationsofmethodsforconductingprogramevaluationsthatcrediblyestimatethecausalimpactsofcleanenergyprograms.IshowhoweachofthesemethodscanbeappliedusingstudiesoffourcleanenergyprogramssupportedbytheRecoveryAct.Ineachcase,Iopenbydescribingthepotentialbiasesthatmayresultinmisleadingclaimsofprogramperformancebasedonprogramparticipationratesandengineeringassumptions.ThenIdescribetheauthors’studyandapplicationofastatisticalmethodthatcanaccountforandminimizethesebiases.Foreachcasestudy,Inotehowthestudy’smethodcouldinformfutureprogramevaluationsforspecificcleanenergyprogramsintheInfrastructureInvestmentandJobsActandthe
InflationReductionAct.
3.1.LearningthroughRandomization:The
WeatherizationAssistanceProgram
The2009RecoveryActprovidednearly$5billionoffundingforWeatherizationAssistancePrograms(WAP)implementedatthestateandlocallevels.Theseweatherizationprogramsfinanceenergy-efficiencyandconservationimprovementsintheresidentialdwellingsofhouseholdswithincomebelowaspecifiedthreshold.
3.1.1.PotentialBiases
TheDepartmentofEnergyhastypicallyestimatedthereducedenergydemandandassociatedenergybillsavingsofweatherizationthroughengineering-basedevaluations(e.g.,OakRidgeNationalLaboratory2015).Engineering-basedanalysessufferfromthreepotentialshortcomings.First,theweatherizationinvestmentinpracticemayyielddifferentenergysavingsbecauseofsimplifyingassumptionsintheengineeringmodelorvariationsinthequalityofthecontractorsundertakingthework.Second,individualsoptingtoparticipateinaweatherizationprogrammaybefundamentallydifferent—perhapstheyaremoreenergyorenvironmentallyconscious—fromthegeneralpopulation,andtheirbehaviormaynotberepresentative.Finally,weatherizationlowersthecostofanenergyservice—suchasheatingahometoagiventemperature.Residentsofaweatherizedhomemayadjustthethermostat,orbuymoreenergy-consumingappliances,andthisso-called“reboundeffect”wouldoffsetsomeoftheenergysavings.
8
3.1.2.AnEvaluationStrategytoAddresstheBiases
Inpolicydebates,therehasoccasionallybeenatensionbetweenadvocatesofprogramevaluation—whoargueforimplementingapublicprogramthrougharandomizedcontroltrialtoenablerigorousassessment—andagencystafforpoliticianswhoclaimthattheprogramshouldbeavailabletoeveryonewhoiseligible.Fowlieetal.(2018)developedacleverwayofresolvingthistension.WorkingwithalocalweatherizationprograminMichigan,theydevelopedarandomizedencouragementprogram—theydidnotalterwhowaseligibleforthismeans-testedprogram,buttheyrandomizedwhoreceivedinformationandtechnicalassistanceforapplyingforweatherizationaid.Thisrandomizationsatisfiedpoliticalconstraints,andalsoallowedtheresearcherstoensurethattheirresultswerenotconfoundedby,forexample,self-selectionintotheprogrambythosemorelikelytobeenergy-conscious.They
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 珠宝首饰设计与D打印技术应用考核试卷
- 消费金融公司的产品线拓展与市场调研考核试卷
- 皮革制品的舒适度测试方法考核试卷
- 电力系统设备绝缘测试与评价考核试卷
- 头部按摩与舒缓技巧考核试卷
- 畜禽繁殖生理与繁殖效率的提升策略考核试卷
- 生物基纤维在户外用品中的应用考核试卷
- 橡胶带的耐臭氧性能评估考核试卷
- 皮革制品的供应链管理与合作伙伴关系考核试卷
- 2025商品房买卖FFZZ合同补充协议文本
- 标准入库授权委托书
- 【消防监督管理】中级专业技术任职资格评审备考题库大全-4简答、论述题部分
- 河南对外经济贸易职业学院教师招聘考试历年真题
- 个人遗体捐赠协议书
- 烟花爆竹考试真题模拟汇编(共758题)
- 政府采购供应商推荐表(附件1)
- 马原第四章资本主义的本质及规律
- 国家职业技能标准 6-30-05-05 挖掘铲运和桩工机械司机(2023年版)
- 22S702 室外排水设施设计与施工-钢筋混凝土化粪池
- 做自己:大学生职业生涯发展智慧树知到答案章节测试2023年哈尔滨工程大学
- 中国核工业集团794矿4.6有害气体中毒事故分析
评论
0/150
提交评论