版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1小学人教版六年级数学上册教案(汇编6篇)
小学人教版六年级数学上册教案第1篇一、教材分析
教材分析是教师的一项重要基本功,是教师备好课、上好课的前提。首先我们来分析一下本节课在教材中的地位和作用。
(一)教材的地位和作用
本节课的内容是在学生学过分数的意义及分数与除法的关系、百分数的意义及应用的基础上进行教学的。比在数学中是一个重点也是一个难点,学生在理解比的意义上往往比较困难。于是教材并没有采取给出几个实例,就直接定义“比”的概念的做法,而是密切联系学生已有的生活经验和学习经验,设计了两类情境——数学情境和生活情境,一类情境是同类量的比较,另一类是不同类量的比较,接着引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生感受到需要刻画两个量之间的数量关系,体会引入比的必要性以及比在生活中的广泛存在。这一系列情境也为学生理解比的意义提供了丰富的直观背景和具体案例。
(二)重点、难点与关键
在认真分析教材的地位和作用的基础上,还要根据教学要求和教材特点,结合学生实际,分析研究教材的重点、难点与关键,才能科学地组织教学内容,设计教学过程,有效地提高课堂教学效益。
1、重点:
理解比的意义,了解比的各部分名称。
2、难点:
理解比的意义,区分比与比值的区别。
3、关键:
提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。
(三)教学目标
分析完教材的编写意图和确定教学的重、难点和关键点之后,我们才可以确定本节课的教学目标。
1、知识与技能目标;
(1)经历从具体情境中抽象出比的过程,理解比的意义,并能用准确的数学语言表述两个量的比。
(2)能正确读写比,了解比的各部分名称;理解比值的概念,能正确地求出比值。
(3)对比的应用有初步的感性认识。
2、过程与方法目标
结合具体的实例,引导学生在独立思考、实际操作和合作交流中,感受“比”产生的背景,理解“比”的意义。
3、情感、态度与价值观目标
通过学习,体会引入比的必要性以及比在生活中的广泛存在和应用。
(四)教具、学具的准备
针对小学生的思维是以形象思维为主,逐渐转向抽象逻辑思维的特点,我借助一下几种教具来辅助这节课的教学。
(1)多媒体课件
(2)每人两张测量表格
(3)多张“生活中的比”的图片。
二、教法分析
生活化的数学课堂就是要让学生在“生活”和“数学”的交替中体验数学,在“退”和“进”的互动中理解数学。通过“退回生活”,为数学学习提供现实素材,积累直接经验;再通过“进到数学”,把生活常识、活动经验提炼上升为数学知识。
本节课我主要使用情境教学法和引导发现法。首先通过创设系列情境,激发学生对比的知识的研究兴趣,引导学生退回“生活”,由浅入深地独立思考,在实际操作和合作交流中,体会生活中存在两个数量之间比的关系,再通过自学课本知识理解数学概念——比的意义,及尝试应用引导学生进到“数学”。最后则组织学生寻找生活中的比,引导学生把生活和数学有效结合起来。目的使学生对比有整体的认识,发展学生的思维能力和语言表达能力,调动学生的各种感官参与到学习活动中。而练习形式多样,使学生从多种方式理解比的意义。
三、说学法
主要采用观察法、自主探究—合作交流法、和实践操作法。首先通过系列情境让学生亲自动手测量和计算,找出两个数量之间比的关系,通过观察、讨论以及自学课本内容后总结出比的意义及相关的知识要点,然后再通过“运用脚掌的长度与身高的比,来计算身高”进一步激发学生对学习比的兴趣性和积极性,并巩固学生对“比的意义”的理解。这几种学法让学生能用数学视角来观察和思考,亲历探索过程。尤其是通过动口、动手、动脑,使学生在多种感官的协调活动中积累感性认识,从而更好地理解比的意义,突出重点,突破难点。
四、说教学过程
小学生的思维以具体形象思维为主,学习抽象的数学知识,必须在认识大量感性材料的基础上,形成经过表象达成理性认知的学习过程。为了全面完成本课的教学目标,体现出学生合作交流、自主探究的学习过程,我从如下几个程序开展教学。
(一)创设情景,感知比较的方法
首先出示情境1。
给同学们来一场“选美”比赛。不过这次“选美”比赛的对象有点特别。(教师出示规格分别是A:6×4、B:2×3、C:8×3、D:8×12、E:2×12五张淘气的照片,全班投票选出最美的几张照片,结果大多数学生都选A:6×4、B:2×3、D:8×12为最美的照片。
然后引导学生从数学的角度去观察和思考,为什么这3张照片最美,而其他两张不好看呢?“这里面有什么奥妙?是否跟数学有关联呢?”可贵的数学意识由此而生。如果没有了学生亲身的“选美”体验和经历,就不会有源自内心的思索和自问?就不会使学生将数学与生活审美的进行联系审视。
接着把这5张照片的形状画在方格纸上,引导学生探索这些长方形之间的关系,让学生意识到仅仅依靠让学生分组完成表1。
通过表1请学生解答了长是宽的几倍和宽是长的几分之几这两个问题并列式,根据学生列的除法算式,从而发现长方形长宽之间的倍数关系,明确是长和宽两个量在比,并使学生体会同类量比的意义。接着让学生画一个具有这样倍数关系的长方形,进一步丰富例证。通过数形结合,使学生对“比”有一些体验。同时,借助图形分类使学生体会引入比的必要性。
接着出示情境2。
情境2向学生提供了马拉松选手赛跑的路程和所用时间的数据,以及某人骑车的路程和所用时间的数据,让学生体会到比较谁的速度快,实际上就是要算出路程与时间的比,看哪个比值大。教学时,我先不出“比”这个词。而是先引导学生弄清题意后,自己填表得出速度,再说一说,怎样求速度,谁的速度快。
最后出示情境3。
情境3向学生分别提供了三个水果摊位出售苹果的价钱的情况,使学生体会到比较哪个摊位的苹果便宜,实际上就是要算出总价与数量的比,看哪个比值小。这里也先不出“比”这个词。而是先启发学生想一想,能不能直接比较哪个摊位上的苹果,怎样才能比较?引导学生独立思考、完成填表,再让学生说一说求单价的方法。
情境2和情境3,让学生感受到在同一背景下,总价和它相对应的数量之间存在固定的倍数关系,使学生体会不同类量比的意义。
利用分块式呈现信息材料,一是渗透要学会用“全面”的观点看待生活中出现的问题;二是创设不同背景下的数学问题情景;更重要的是引导学生在比较两个数量之间的关系时,逐步体验感悟出:单纯从绝对量的多少(比差)来比较是不够的,还要用相对量(比商)来比较。
(二)探究比的意义,揭示学习的主题
在以上3个情境的基础上,接着揭示课题,引出“比”的概念。因为六年级的学生已经具备一定的自学能力,于是,接下来就让学生自学书本第50页“认一认”中比的概念、比的读法和写法以及如何求比值,然后由学生汇报学习成果,进一步培养学生的自学能力和表达能力。在汇报比的概念的时候,我则着重引导学生寻找概念的重点词、重点意义和条件来加深对概念的理解和记忆。而比的概念中,关键字就是“相除”。
接着组织学生回顾前面情境中的有关数量关系,鼓励学生用比的方式说一说,写一写。先是由个别学生说,教师再对学生的表达进行规范,然后让学生在小组里互相说。然后,引导学生说出求比值的方法就是用前项除以后项。北京市教科院基础教育科学研究所研究员、国家数学课程标准研制组、北师大(新世纪)版数学实验教科书编写组的成员陶文中教授给我们指出:学生是否是真的掌握了所学知识,要做到三清——想清、写清和说清。“想清、写清”,绝大部分老师在教学过程中都是非常重视培养学生这一方面的能力,而“说清”却往往被忽略。这样不利于学生良好的数学素养的养成。于是,在我这节课中,我非常重视学生是否能用准确的数学语言表达3个情境中有关数量的比的关系,给予学生充分表达的机会与时间。
(三)巩固新知、拓展运用,深化理解比的意义
在学生想清和说清的基础上,为了让学生进一步内化知识,形成扎实的转化,发展能力,同时体现新课标倡导的“人人学有价值的数学;人人获得必需的数学;不同的人在数学上得到不同的发展”的新理念,我设计了以下三个层次的练习。
第一组:巩固性练习
1、读出下面各比,并求出比值。
(1)3:12(2)5/8(3)6:2/3(4)1/5:1/6
通过各种类型的比,使学生知道比的前项、后项的呈现方式是多种的,比值可以是整数、分数、小数。以及让学生仔细观察比与比值的区别,明确比表示两个数量之间的倍数关系,它是一个式子,而比值是一个数,这是很多学生往后比较容易出错的一个知识难点。
2、找比。
六(1)班有男生25人,女生21人。
男生人数与女生人数的比是()。
女生人数与男生人数的比是()。
通过这一题让学生弄清楚,究竟是谁与谁相比。
第二组:综合性练习
判断。
1、小强身高148厘米,小明身高12分米,小强和小明身高的比是148﹕12。
2、5÷4又可以说成5比4,又可以写成5/4。
通过这两道题,使学生明白两个量之间的比要统一单位。
3、体育比赛中的“4﹕0”的意义是什么?它是一个比吗?(让学生展开讨论,然后回答。)
还有的同学指出:从4﹕0这个比出发,根据求比值的方法,4﹕0=4÷0=?这个问题,根据除法中除数不能为0和分数中分母不能为0,得知比的后项不能是0,所以这个不是我们这节课所学的比。
第三组:发展性练习
1、从同学们非常喜欢的柯南破案故事入手。告诉同学们:(前不久,一个月黑风高的晚上,某珠宝店发生了一起特大失窃案,侦察员接到报警后立即赶到现场,这时罪犯已经逃走,现场只留下一个脚印)这时柯南来了,他仔细观察完现场后只是量了量脚印的长25厘米,就果断地推算出疑犯的身高。你们知道这里面有什么奥秘吗?你能算出这个疑犯的身高吗?这个故事挑起学生探究的热情和兴趣,引发学生对数学知识的联想和猜测,这可能与人的身高与脚印长(即脚长)之间的关系有关,于是紧接着鼓动他们展开研究和讨论,以小组为单位从自己身上进行研究,量一量,算一算,并提示学生将发现的关系用刚学到的比的知识来表示。这样教师就不用多费一句口舌,他们饱涨的热情和关注使得他们立刻就发现了其中蕴含的规律。
汇报交流中:教师随机板书几位学生身高与脚长的比及比值,当写到第5个时,下面就有学生喊了起来:“老师,我发现了一个规律:身高与脚长的比值都接近整数7!”
又有学生说:柯南就是用罪犯的脚印长度乘7来推算出疑犯的身高的。
接着,教师随即分别出示维纳斯女神雕像图片、芭蕾舞演员踮起脚尖的图片、我国的国旗图片及摔碎的古玩花瓶图片,从而引出美学中的比、国旗中的比及考古学中比的应用,给学生带来了一种新奇的体验,一种清新的熏陶。此时教师适时接上:其实,生活中有趣的比还有很多,感兴趣的话,可以去搜集搜集。从而将学生由课内引到课外。
(四)归纳小结,质疑问难
通过这节课的学习,你有什么收获?你对自己的表现满意吗?还有什么不清楚的问题吗?
五、板书设计
生活中的比
两个数相除,又叫做这两个数的比。
小学人教版六年级数学上册教案第2篇教学内容:
人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:
理解比的基本性质
教学难点:
正确应用比的基本性质化简比
教学准备:
课件,答题纸,实物投影。
教学过程:
一、复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
16:20=(16○□):(20○□)。
4.完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善板书。
(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)
5.质疑辨析,深化认识。
【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。
三、比的基本性质的应用
师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?
今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。
(一)理解最简整数比的含义。
1.引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
2.从下列各比中找出最简整数比,并简述理由。
3:4;18:12;19:10;;0.75:2。
(二)初步应用。
1.化简前项、后项都是整数的比。(课件出示教材第50页例1)
学生独立尝试,化简后交流。
(1)15:10=(15÷5):(10÷5)=3:2;
(2)180:120=(180÷□):(120÷□)=():()。
预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。
2.化简前项、后项出现分数、小数的比。(课件出示)
师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像:和0.75:2,
这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。
学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
4.方法补充,区分化简比和求比值。
还可以用什么方法化简比?(求比值)
化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
5.尝试练习。
把下面各比化成最简单的整数比(出示教材第51页“做一做”)。
32:16;48:40;0.15:0.3;
【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。
四、巩固练习
(一)基础练习
1.教材第53页第4题。
把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。
(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。
(3)某企业去年实际产值与计划产值的比是275万:250万。
2.教材第53页第6题。
(二)拓展练习(PPT课件出示)
学生口答完成。
1.2:3这个比中,前项增加12,要使比值不变,后项应该增加()。
2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()
【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。
五、课堂小结
这节课你有什么收获?还有什么疑问?
小学人教版六年级数学上册教案第3篇教学内容:
教科书第12页,圆的认识及圆各部分的名称。
教学提示:
本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。
单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。
一方面要激发学生学习圆的有关知识的,另一方面要让学生体会到本单元知识与现实生活的密切联系。
例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。
例2通过操作活动让学生认识圆各部分的名称和特征。
发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。
在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。
同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。
教学目标:
1.知识与技能:使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助物品或圆规画圆,会应用圆的知识解释一些日常生活现象。
2.过程能力与方法:使学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念、合作意识,培养学生观察、动手操作、抽象概括、与他人合作交流等各方面的能力,进一步发展数学思考。
3.情感态度与价值观:使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。
教学重点:
感知并了解圆的基本特征,认识圆的各部分名称。
教学难点:
理解直径与半径的关系,熟练掌握画圆的方法。
教具准备:
多媒体课件,为学生准备两张白纸、一个圆片。
学具准备:
圆规、圆形物体、直尺。
教学过程:
一、新课导入
(欣赏单元主题图,激趣引入。)
1.观察主题图。
提问:同学们,在我们美丽的学校内有一个水池,你们观察过吗?池内的鱼儿美丽,水面平静。请同学们想象一下:如果我们在平静的水面上投进一块石子后,水面荡开的波纹,应该是一个近似的什么形状?请用动作说明。
圆在生活中太常见了!许多物体表面的形状与圆有关。根据你们的经验,能举个例子吗?
2.揭题:看来同学们对圆已经有了一些认识,今天这节课就学习“圆”。
3.在以前的学习中,已经认识了哪些平面图形?其实圆也和学过的这些图形一样也是一个平面图形,但是和这些图形又有不同之处,你发现了吗?(圆是由曲线围成的一种平面图形)(注意:①学生自带的圆形物体可以让学生用手指一指;②在指物体时,要明确指的是哪一个面;③不能把球误认为圆。)
【设计意图:一方面让学生感知圆来源于生活,与生活实际紧密相连,体验数学与生活的联系;另一方面通过观察、比较,让学生感受圆和以前学过的平面图形的不同。】
二、探究新知
1.圆规画圆。
(投影展示例1图中圆形物品)
教师:同学们观察图中的物品,它们是什么形状?
预设:(生:圆形。)
教师:古希腊哲学家、数学家毕达哥拉斯认为“一切平面图形中最完美的是圆!”。你能用手中的工具画一个标准的圆吗?(指向明确用工具画圆,并请学生尝试画圆)
学生独立用画圆,教师巡视指导。
投影展示学生画的圆。(由于是第一次画圆,学生画的可能不规范)
教师可以提问,请你介绍一下你用的是什么工具,是怎么画圆的?
学生回答用圆规画圆。
此时教师可演示怎样使用圆规正确的画圆。(强调不能用手握住圆规的两脚来画圆)
然后跟着要求同学们用圆规再画一个标准的圆。
学生独立画完之后,投影展示学生画的圆,指明学生说画法。
预设:我用圆规画圆,我把圆规的一个脚固定在一个点上,另一个脚绕这个点旋转1圈,就画出了一个圆。
【设计意图:让学生尝试用圆规画圆,体会用圆规画圆的步骤,明白到圆的大小与圆规两脚间的距离有关,用圆规画圆很方便。】
2.认识圆。
(1)提问:观察对比上面所画的两个圆,是不是一样的?(预设:不一样)
哪些地方不一样?(预设:大小、位置)
请同学们思考为什么不一样呢?
圆的位置不一样,是因为固定点的位置不同,其实,我们把在圆中心的这一固定点叫做圆心。画圆时,固定的点叫做圆心,圆心一般用字母O表示。
圆心到圆上任一点的线段是半径,一般用字母r表示。
通过圆心并且两端都在与圆上的线段是直径,一般用字母d表示。
【设计意图:结合学生圆规画圆的体会,介绍圆心、半径,明确画圆时圆规两脚间的距离就是圆的半径。这样学生初步感知圆心、半径和直径的含义。】
(2)强化认识半径。
教师:刚才同学们画的圆都比较好,我们还认识了半径?那现在大家就在你刚才画的圆中画出这个圆的半径来,画得越多越好。
教师可以提问:想一想,圆有多少条半径?能画完吗?
预设:在圆内有无数条半径,画不完。
提问:你是怎样观察得出在一个圆内有无数条半径的?
预设:因为半径是连接圆心到圆上任意一点的线段,这样的线段有无数条。
教师:那么半径是一条怎样的线段呀?是连接圆心到圆上任意一点的线段。(展示动画从圆心到圆上的一条线段,齐读)由于圆周上有无数个点,所以半径就有无数条。
教师:现在就请同学们画出这无数条半径的代表,你认为画几条合适。(预设:1条,因为所有半径都相等。)
质疑,请学生说理由:直尺量;或用圆纸对折。
说明半径的特征并板书:在同一圆内,半径有无数条,并且长度都相等。
【设计意图:让学生掌握通过动手折一折、量一量、比一比、画一画,及在小组里相互交流、讨论,获得圆的特征之一。不仅使学生的认识由感性上升到理性,而且使学生学到了解决数学问题的一些基本方法。】
(3)强化认识圆的直径。
①除了半径以外,在圆中还有没有像这样比较特殊的线段能决定圆的大小。(预设:直径)
教师:指明学生到黑板上画出来,并提问画时要注意什么?(预设:过圆心,两端在圆上)其实直径就是通过圆心并且两端都在圆上的线段。
②请学生在自己画的圆内画出直径的代表。画得越多越好。
③揭示直径的特征:在同一圆内,直径有无数条,并且长度都相等。
④引出半径和直径的关系,或动手验证;直尺量;或用圆纸对折。
通过对折等活动,得出:圆是轴对称图形,每条直径所在的直线都是圆的对称轴。
【设计意图:让学生掌握通过动手折一折、量一量、比一比、画一画,及在小组里相互交流、讨论,获得圆的特征之一。不仅使学生的认识由感性上升到理性,而且使学生学到了解决数学问题的一些基本方法。】
(4)揭示半径和直径的关系。
d=2r,r=1
2d。这个关系的前提是什么?(预设:同一圆内)
为什么要加这个前提,不要行吗?
学生讨论后汇报。
师生共同小结:在同圆或等圆里,所有的半径都相等,所有的直径也都相等;直径等于半径的2倍。
三、巩固新知
1.练习三第1题:用彩色笔标出下面各圆的半径和直径,并量出长度。
2.完成第13页课堂活动第1题。
第1题(1):画几个圆心在同一点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。
画完第一问之后,教师可提问:圆心在同一点上,为什么有的圆大,有的圆小?
(预设:因为半径不一样,半径越大,圆就越大)由此得出:圆的大小是由半径决定的。
第2问画完后,教师可以提问:这几个圆的大小是一样的,为什么有的圆在这里,有的圆在那里呢?(预设:因为圆心的位置不一样)由此得出:圆的位置是由圆心决定的。
第1题(2):学生独立画半径为2.5厘米的圆,用字母标出圆心、半径和直径,小组内交流。
3.独立完成教材13页课堂活动第2题,小组内交流。
【设计意图:通过本环节,让学生对圆的特征进一步理解,对于圆的特征更加熟悉,对所学知识掌握地更加牢固。】
四、达标反馈
1.说一说圆中什么样的线段是半径、什么样的线段是直径?
2.判断题。
(1)所有的半径都相等,所有的直径也都相等。()
(2)从圆心到圆上的任意一点的距离都相等。()
(3)画一个直径为4厘米的圆,圆规两脚间的距离应是4厘米。()
(4)直径是3厘米的圆比半径是2厘米的圆大。()
3.填一填。
(1)一个边长8厘米的正方形里,画一个的圆,这个圆的直径是()厘米,半径是()厘米。
(2)在一个长6分米、宽4分米的长方形里,画一个的圆,这个圆的半径是()分米。
4.盒子里刚好放下三个罐头,每个罐头的半径为3厘米,盒子的长和宽各是多少?
五、课堂小结
教师:通过这节课的学习,你对圆有哪些认识?你有什么收获?
学生谈自己的收获,畅所欲言。
教师:想一想生活中的一些物品为什么要设计成圆形?车轮为什么要设计成圆形?下节课我们一起来交流。
【设计意图:通过回顾总结,对知识进行梳理,有助于学生逐步形成数学学习方法和经验;同时把“圆”再次回归生活,将数学与生活紧密结合,让学生体会到数学学习的价值,深化学生对圆的特征的认识,增强数学学习的兴趣。不仅拓宽了学生的知识面,强调数学与生活有密不可分的联系。更是把学生的数学思维引向生活。】
小学人教版六年级数学上册教案第4篇复习内容:
课本第22页练习六。
复习目的:
1、使学生进一你好理解分数乘法的意义,掌握分数乘法的计算法则,并能正确、熟练地进行计算。
2、使学生进一你好理解整数运算定律同样适用于分数,并能应用这些运算定律进行简便计算。
3、使学生进一你好理解倒数的意义并掌握求倒数的方法。
复习过程:
(一)导入:板书:整理和复习
(二)整理。
1、启发学生回忆整数乘法的意义:5个12是多少?怎样列式。
使学生明确:5×12或12×5
求几个相同加数的和的简便运算。
2、启发学生回忆本单元学过的分数乘法的意义:
使学生明确:8/15×5,5个8/15的和,
8/15+8/15+8/15+8/15+8/15=8/15×5
分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
3、一个数乘以分数的意义,就是求这个数的几分之几是多少?
使学生明确:24×3/8就是求24个3/8是多少,7/18×9/14就是求7/18的9/14是多少,是对整数乘法的的扩展。
练习:练习七的第3题。
板书:
分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变,为了计算简便,能约分的要先约分,然后再乘。
一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母,为了计算的简便,也可以先约分再乘。
使学生明确:分子相乘的积作分子,分母相乘的积作分母。
板书:
应用乘法交换律应用乘法结合律应用乘法分配律
练习:练习七的第4、5题。
5、口算
练习七1、10题。
6、分数应用题。
(1)把谁看作单位“1”
六年级参加数学小组的有36人,语文小组的人数是数学小组的,体育小组的人数是语文小组的倍。体育小组有多少人?
(2)练习。
①打字员打一部书稿,每天完成,5天完成这部书稿的几分之几?
×5
②立新小学六年级有学生155人,其中的参加科技活动小组,参加科技活动小组的有多少人?
155×
④党校食堂九月份用煤560千克。十月份计划用煤是九月份的,而十月份实际用煤比原计划节约,十月份比原计划节约用煤多少千克?
560××
7、倒数:整理和复习第7题。
堂上练习:
1、练习七第2题,抢答,小组练习。
2、练习七的第3、11题。
3、练习七的第16、17题。
作业:
练习七的第12—15题。
小学人教版六年级数学上册教案第5篇教学内容:
九年义务教育六年制小学数学课本第十一册“比的意义”。
教学目标:
1.掌握比的意义,会正确读、写比。
2.记住比的各部分名称,会正确求比值。
3.理解比与除法、分数之间的关系,明确比的后项不能为0的道理,同时懂得事物之间的相互联系性。
4.通过自学讨论,激发学生合作学习的兴趣,培养学生分析、比较、抽象、概括和自学探究的能力。
一、创设情境,诱发参与
1、师:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?可以提出什么问题,怎样列式解答?
生1:牛奶比果汁多1杯。
生2:果汁比牛奶少1杯。
生3:果汁的杯数相当于牛奶的
生4:牛奶的杯数相当于果汁的
师:2÷3是哪个量和哪个量比较?
生:果汁的杯数和牛奶的杯数比较。
师:3÷2求得又是什么,又可以怎样说?
生:牛奶的杯数和果汁的杯数比较。
2、师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。今天这节课我们学习用一种新的方法对两种量进行比较。(板书:比)
3、师:那么这节课你想学习比的哪些知识呢?
(什么叫比,谁和谁比……)
二、自学探究新知
1.探究比的概念
教师指着板书问:2÷3求的是什么?是哪个量和哪个量的比?
生:2÷3求的是果汁是牛奶的几分之几,是果汁和牛奶的比。
师:对!2÷3求的是果汁是牛奶的几分之几,也可以说成果汁和牛奶的比是2比3。
(板书:果汁和牛奶的比是2比3,学生齐读。)
师:照这样,牛奶是果汁的几分之几也可以说成牛奶和果汁的比。
生:牛奶是果汁的几分之几也可以说成牛奶和果汁的比是3比2。
(板书:牛奶和果汁的比是3比2)
师:都是果汁和牛奶的比较,为什么一个是2比3,而另一个却是3比2呢?
生:因为2比3是果汁和牛奶的比,而3比2是牛奶和果汁的比。
师:对,研究两个数量的比较,谁和谁比,谁在前,谁在后,是不能颠倒的。
出示试一试。
师:1:8表示什么意思?
生:1和8表示洗洁液1份,水8份。
师:怎样表示容液里洗洁液与水体积之间的关系?
生:先求出体积再比较。
课件出示:走一段900米长的山路,小军用了15分钟,小伟用了20分钟。让学生填表。
师:小军和小伟的速度是怎样求出来的?900:15表示什么?900:20又表示什么?
师:说说900米和15分钟的意义。
生:900米和15分钟分别是小军走的路程和时间。
师:那么小军的速度又可以说成哪两个量的比?
生:小军的速度可以说成路程和时间的比。
师:什么叫比?(同桌互相说一说,然后汇报。)
生1:除法叫比。
生2:两个数相除叫比。
师:两个数相除,以前叫除法,今天就叫做比。多了一种叫法,你觉得“比”字前面加上一个什么字比较妥当?
生1:加上“又可以”。
生2:加上“又”字。
师:两个数相除又叫做两个数的比。想一想这个比表示的是两个数之间的什么关系?
(随着学生的回答,教师在“相除”下面加上着重号,学生齐读比的概念。)
2.自学探究比的各部分名称等知识。
师:请同学们自学课本第68~69页。把自己认为重要的知识画出来,自学完后同桌互相说说“我自学到了什么”。
(学生同桌相互说完后,集体汇报探究。)
生:我学会了比的写法。
(老师指着2比3,让学生到黑板上写出2∶3。)
师:2、3中的符号“∶”是什么呀?
生:这是比号。(板书:比号)
师:写比号时,上下两个小圆点要对齐放在中间。(让学生同桌互相看看比号写得是否正确,并接着汇报。)
生:我知道了比号前面的数叫做比的前项,比号后面的数叫做比的后项。
师(指着2∶3)问:前项后项各是几呀?(学生答后接着汇报。)
生:我知道了比的读法。
(教师指着2∶3,指名学生试读2比3,然后学生齐读2比3。)
师:我们已经知道比的读法、写法,以及各部分的名称,想一想,你还学到了什么知识?
小学人教版六年级数学上册教案第6篇教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:
理解比的基本性质
教学难点:
正确应用比的基本性质化简比
教学准备:
课件,答题纸,实物投影。
教学过程:
一、复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
16:20=(16○□):(20○□)。
4.完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善板书。
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拆迁合同的修改与终止
- 2024【变压器租赁合同范本】变压器安装合同范本
- 市场租赁合同纠纷处理指南
- 2024年家政服务合同协议书
- 2024技术顾问聘用合同书范文
- 办公家具项目合作意向书
- 2024年房屋分配合同模板
- 劳动合同解除与经济补偿
- 数据录入与维护服务合同范本
- 二手工作服购销合同
- 道德与法治八上八上8.2《坚持国家利益至上》教学设计
- 2024年全国各地中考试题分类汇编:作文题目
- 工程代收款付款协议书范文模板
- GB/T 19274-2024土工合成材料塑料土工格室
- 全套教学课件《工程伦理学》
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 2024年认证行业法律法规及认证基础知识
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- YYT 0653-2017 血液分析仪行业标准
- 刑事受害人授权委托书范本
- 《文明上网健康成长》的主题班会
评论
0/150
提交评论