微积分(下)英文教材_第1页
微积分(下)英文教材_第2页
微积分(下)英文教材_第3页
微积分(下)英文教材_第4页
微积分(下)英文教材_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter1InfiniteSeries

Generally,forthegivensequence

a1,a2,a3......an,.......,

theexpression

formedbythesequencea1,a

2,

a3......an,.......,

a1

a2

a3

.....

an

.......,

iscalledtheinfiniteseriesoftheconstantsterm,denotedbyan,thatis

n1

an=a1a2a3.....an.......,

n1

Wherethenthtermissaidtobethegeneraltermoftheseries,moreover,thenthpartialsumoftheseriesisgivenby

Sna1a2a3.....an.

1.1Determinewhethertheinfiniteseriesconvergesordiverges.

Whileit’possibletoaddtwonumbers,threenumbers,ahundrednumbers,orevenamillionnumbers,it’impossibletoaddaninfinitenumberofnumbers.

Toformaninfiniteserieswebeginwithaninfinitesequenceofrealnumbers:a0,a1,a2,a3.....,wecannotformthesumofalltheak(thereis

aninfinitenumberoftheterm),butwecanformthepartialsums

0

S0

a0

ak

k

0

1

S1

a0

a1

ak

k0

2

S2

a0

a1

a2

ak

k

0

3

S3a0a1a2a3ak

k0

.

n

Sna0a1a2a3.......anak

k0

Ifthesequence{Sn}ofpartialsumshasafinitelimitL,

Wewrite

L

ak

k

0

andsaythattheseriesakconvergestoL.wecallLthesumof

k0

theseries.

Ifthelimitofthesequence{Sn}ofpartialsumsdon’texists,wesay

thattheseriesakdiverges.

k0

Remarkitisimportanttonotethatthesumofaseriesisnotasumintheorderingsense.Itisalimit.

EX1.1.1provethefollowingproposition:

Proposition1.1.1:

If

(2)If

1

1,

thenthe

thenthe

ak

k0

xk

k0

converges,and

diverges.

xk

1

;

k0

1x

Proof:thenthpartialsumofthegeometricseriesaktakesthe

k0

formSn

1x1

x2

x3.......

xn1Multiplicationbyxgives

xSn

x(1x1

x2

x3.......

xn1)=x1

x2

x3.......

xn1

xn

Subtractingthesecondequationfromthefirst,wefindthat

(1

x)Sn

1

xn.For

x

1,

thisgives

Sn

1

xn

1

x

Ifx

1,then

xn

0,andthisbyequation.

limSn

lim

1

xn

1

1

x

1

x

n

0

n0

Thisproves(1).

Nowletusprove(2).Forx=1,weuseequationanddevicethat

Snn,

Obviously,limSn,akdiverges.

nk0

Forx=-1weuseequationandwededuce

Ifnisodd,thenSn0,

Ifniseven,thenSn1.

ThesequenceofpartialsumSnlikethis0,-1,0,-1,0,-1..

Becausethelimitofsequence{Sn}ofpartialsumdoesnotexist.By

definition1.1.1,wehavetheseriesxKdiverges.(x=-1).

k0

Forx1withx1,weuseequation.Sinceinthisinstance,we

havelimSn

lim1

xn

n

n

1

x

.Thelimitofsequenceofpartialsumnotexist,

theseriesxkdiverges.

k0

Remarktheaboveseriesiscalledthegeometricseries.Itarisesin

somanydifferentcontextsthatitmeritsspecialattention.

geometricseriesisoneofthefewserieswherewecanactuallygiveanexplicitformulaforSn;acollapsingseriesisanother.

1

k0(k1)(k2)

Solutioninordertodeterminewhetherornotthisseriesconvergeswemustexaminethepartialsum.Since

1

1

1

(k1)(k2)

k1k

2

Weusepartialfractiondecompositiontowrite

1

1

1

1

Sn

2

2.

3..........

....

n(n1)

(n1)(n

2)

1.

1

1

)(

1

1

1

1

1

1

1

1

(

)

(

)

..............

(

)(

)

12

23

34

nn1

n1n2

1

1

1

1

1

1

1

1

1

1

2

2

3

34

........................

nn1n1

n2

Sinceallbutthefirstandlastoccurinpairswithoppositesigns,thesumcollapsestogive

Sn

1

1

n2

Obviously,asn

,Sn

1.thismeansthattheseriesconvergesto1.

limSn

lim(1

1

)

1

therefore

1

1

n

n

n

2

n0(k1)(k

2)

EX.1.1.3provesthefollowingtheorem:

Theorem1.1.1thekthtermofaconvergentseriestendsto0;namelyif

akConverges,bydefinitionwehavethelimitofthesequence{Sn}of

k0

partialsumsexists.Namely

n

limSn

lim

akl

n

n

0

k

Obviously

n

since

ansnsn1,wehave

limSn1

lim

ak

l.

n

n

0

k

liman

lim(Sn

Sn1)

limSn

limSn1

ll

0

n

n

n

n

Achangeinnotationgivesliman

0.

k

Thenextresultisanobviously,butimportant,consequenceof

(Adivergestest)iflimak0,orif

k

limandoesnotexist,thentheseriesakdiverges.

k

k0

limak0,andthen

k

akconverge.Infact,therearedivergentseriesforwhichlimak

0.For

k0

k

example,theseries

1

1

1

.............

1

.Since

itis

k1k

1

2

.....

n

sequence{Sn}ofpartialsum

{Sn}

1

1

1

n

is

unbounded.

So

1

2

.............

n

n

n

limSn

lim

n

,thereforetheseriesdiverges.

n

n

But

limak

lim

1

0

k

k

k

EX.1.1.3determinewhetherornottheseries:

k

0

1

2

3

4

..........Converges.

k0k

2

3

4

5

1

Solutionsincelimak

lim

k

lim

1

1

0,thisseriesdiverges.

1

k

k

k

1

k

1

k

1

k02k

Solution

1

the

given

series

is

a

geometric

series.

xk

(1)k,

and

x

1

1,byproposition

k0

k0

2

2

converges.

Solution2

Sn

1

1

1

.........

1

1,①

2

4

2

n

1

1

1

1

.........

1

1

,②

Sn

2

2

2

3

2

n1

2

n

2

2

①-②(1-

1

)Sn

1

1

,

Sn

2(1

1

n).

2

n

2

1n)

2

limSn

lim2(1

2

n

n

2

Bydefinitionofconvergesofseries,thisseriesconverges.

EX.1.1.5proofsthefollowingtheorem:

Theorem

If

the

series

k

0

akand

k0

bk

converges,then(1)

(akbk)alsoconverges,andisequalthesumofthetwoseries.

k0

(2)IfCisarealnumber,then

Cak

alsoconverges.Moreoverif

k0

aklthen

Cak

Cl.

k0

k0

Prooflet

n

n

n

n

Sn(1)

ak,Sn2

bkSn(3)

(akbk),Sn4

Cak

k0

k

0

k0

k0

NotethatSn(3)Sn(1)Sn(2)andSn(4)CSn(1)

Since

Then

limSn1

n

limSn(3)

n

l,limSn(2)

m,

n

lim(Sn(1)

Sn(2))limSn(1)

limSn(2)

lm

n

n

n

limSn(4)

n

limCSn(1)

n

ClimSn(1)Cl.

n

Theorem1.1.4(squeezetheorem)

Supposethat{an}and{cn}bothconvergetolandthatanbncnfor

nk,(kisafixedinteger),then{bn}

alsoconvergestol.

limsin3n

0

.

n

n

Solution

Forn

1

sin3n

1

1

1

1,

(

)

,since

lim()

0,andlim()0,

n

n

n

n

n

n

n

theresultfollowsbythesqueezetheorem.

Forsequenceof

variablesign,itishelpfultohavethefollowing

result.

provethatthefollowingtheoremholds.

Ifliman

0,thenliman

0,

n

n

Proof

since

an

an

an,

Namelythesqueezetheorem,weknowtheresultistrue.

Exercise1.1

(1)

Anexpressionoftheform

a1a2

a3

iscalled

(2)

A

seriesa1a2a3is

said

to

convergeifthesequence

Sn

converges,whereSn=

1.

Thegeometricseriesa

ar

ar2

convergesif

;inthiscase

thesumoftheseriesis

2.

Ifliman

0

,wecanbesurethattheseriesan

n

n1

3.

Evaluate

r(1

r)k,

0r

2.

k

0

4.

Evaluate

(1)kxk,

1

x

1.

k

0

5.

Showthat

ln

k

diverges.

k

1

k1

Findthesumsoftheseries6-11

6.

10.

1

7.

1

8.

1

9.

3

k

3(k

1)(k

2)

k

12k(k1)

k1k(k3)

k010k

3k

4k

11.

2k

3

k0

5k

k

03k

12.

Derive

the

following

results

from

the

geometric

series

(1)kx2k

1

2,

|x|1.

k

0

1x

Testthefollowingseriesforconvergence:

13.

n

14.

1

n11n

k02k3

1.2SeriesWithPositiveTerms

ThecomparisonTest

Throughoutthissection,weshallassumethatournumbersanarex0,

thenthepartialsum

Sna1a2anareincreasing,i.e.

S1S2S3SnSn1

Iftheyaretoapproachalimitatall,theycannotbecomearbitrarily

large.ThusinthatcasethereisanumberBsuchthatSnBforalln.

SuchanumberBiscalledanupperbound.ByaleastupperboundwemeananumberSwhichisanupperbound,andsuchthateveryupperboundBisS.Wetakeforgrantedthataleastupperboundexists.ThecollectionofnumbersShasthereforealeastupperbound,i.e.,theren

isasmallestnumberssuchthat

Sn

Sforalln.Inthatcase,thepartial

sums

Sn

approach

S

asalimit.

In

otherwords,givenanypositive

number

0,wehave

S

Sn

Sforallnsufficientlylarge.

S1

S2

Sn

S

ThissimplyexpressesthefactSistheleastofallupperboundsforourcollectionofnumbersSn.Weexpressthisasatheorem.

Theorem

Letan(n1,2,)beasequenceofnumbers

0andletSn

a1a2

an.IfthesequenceofnumbersSnisbounded,

thenitapproachesalimitS,whichisitsleastupperbound.

Theorem1.2.2Aserieswithnonnegativetermsconvergesifandonlyifthesequenceofpartialsumsisboundedabove.

Theorem1.2.1and1.2.2giveusaveryusefulcriteriontodeterminewhenaserieswithpositivetermsconverges.

Theconvergenceordivergenceofaserieswithnonnegativetermsis

usuallydeducedbycomparisonwithaseriesofknownbehavior.

Theorem1.2.3(TheOrdinaryComparisonTest)Let

an

and

n1

bnbetwoseries,with

an

0forallnand

bn

0foralln.Assumethat

n1

thereisanumbersc

0,

suchthat

an

cbn

for

all

n,andthat

bn

n1

converges,then

anconverges,and

an

cbn.

n1

n1

n1

Proof:

Wehave

a1a2

ancb1

cb2cbnc(b1

b2

bn)cbn.

n1

Thismeansthat

c

n

isaboundforthepartialsums1

a

2

n.

b

a

a

n1

Theleastupperboundofthesesumsisthereforecbn,thusprovingour

n1

theorem.

Theorem1.2.3hasananaloguetoshowthataseriesdoesnotconverge.

Theorem1.2.4(Ordinary

ComparisonTest)Let

an

and

bn

be

n1

n1

twoseries,withanandbn0foralln.Assumethatthereisanumber

c0suchthat

an

cbn

forallnsufficientlylarge,and

bn

doesnot

n1

converge,then

an

diverges.

n1

Proof.

Assume

an

cbn

for

n

n0

,

since

bn

diverges,we

can

n1

makethepartialsum

N

bn

bn

bn

0

1

bN

n

n0

0

N

N

N

arbitrarilylargeasNbecomesarbitrarilylarge.But

an

cbncbn.

nn0

nn0

nn0

N

aNarearbitrarily

largeasN

Hencethepartialsum

an

a1

a2

n

1

becomesarbitrarilylarge,arehenceandiverges,aswastobeshown.

n1

Remarkonnotationyouhaveeasilyseenthatforeachj0,ak

k0

convergesiff

akconverges.Thistellsusthat,indeterminingwhether

kj1

ornotaseriesconverges,itdoesnotmatterwherewebeginthe

summation,wheredetailedindexingwould

contributenothing,wewill

omit

itandwrite

withoutspecifyingwherethesummationbegins.

For

instance,it

makessensetoyouthat

12convergesand

1

k

k

divergeswithoutspecifyingwherewebeginthesummation.Butintheconvergentcaseitdoes,however,affectthesum.Thusforexample

1

2,

1

1,

1

1,andsoforth.

k02k

k12k

k22k

2

12

converges.

n1n

Solution

Letuslookattheseries:

1

1

1

1

1

1

1

1

1

12

22

32

42

52

72

82

152

162

Welookatthegroupsoftermsasindicated.Ineachgroupofterms,ifwedecreasethedenominatorineachterm,thenweincreasethefraction.Wereplace3by2,then4,5,6,7by4,thenwereplacethenumbersfrom8to15by8,andsoforth.Ourpartialsumsthereforelessthanorequalto

1

1

1

1

1

1

1

1

andwenotethat2occurs

12

22

22

42

42

42

82

82

twice,4occursfourtimes,8occurseighttimes,andsoforth.Ourpartial

sumarethereforelessthanorequalto

1

1

1

1

1

1

1

1

12

22

22

42

42

42

82

82

andwenotethat2occurstwice,4occursfourtimes,8occurseighttimes,andsoforth.Hencethepartialsumsarelessthanorequalto

1

2

4

8

1

1

1

?

=1+

12

22

42

82

2

4

8

Thusourpartialsumsarelessthanorequaltothoseofthegeometricseriesandarebounded.Henceourseriesconverges.

Generallywehavethefollowingresult:

1

1

1

1

1

1

,wherepisaconstant,

Theseriesn1np

2p

3p

4p

np

iscalledap-series.

p

1,thep-seriesconverges;andifp1,then

thep-seriesdiverges.

n2

converges.

3

n1n

1

SolutionWewrite

n2

1

1

1(1

1

)

.Thenweseethat

n3

n

1

n

1

1

n2

n3

n2

1

11

1

n3

1

2n

2n.Since

n1n

doesnotconverge,itfollowsthattheseries

n2

doesnotconvergeeither.Namelythisseriesdiverges.

n1n3

1

n2

7

converges.

n12n4

n3

Proof:

Indeedwecanwrite

n

2

7

n2(1

7

2)

1

1

7

2

n

n

2n4

4(2(1

3

4)n2

2(1

3

n3n

)3

n

n

)3

4

n

n

Fornsufficientlylarge,thefactor

1

7

2

iscertainlybounded,

2(1

n

3

)3

4

n

n

andinfactisnear1/2.Hencewecancompareourserieswith

1

n2to

seeconverges,because

12

convergesandthefactorisbounded.

n

1

diverges.

ln(k

b)

Solution

1Weknow

that

ask

,

lnk

0

.

It

followsthat

k

ln(k

b)

0

,and

thus

that

ln(k

b)

ln(k

b)k

b

0.

Thus

for

k

k

b

k

k

b

k

sufficiently

large,

ln(k

b)

k

and

1

1

.

Since

1

diverges,

k

ln(k

b)

k

wecanconcludethat

1

diverges.

ln(k

b)

Solution

2Another

way

to

showthat

ln(k

b)

k

forsufficiently

largek

is

toexaminethe

function

f(x)

xln(x

b)

.At

x

3

the

functionispositive:

f(3)3ln932.1970

Sincef'(x)

1

1

b

0for

allx

0,

f(x)

0

forall

x

3

.It

follows

x

that

ln(x

b)x

forall

x

3.

Wecomenowtoasomewhatmorecomparisontheorem.Ourproof

reliesonthebasiccomparisontheorem.

Theorem1.2.5(TheLimitComparisonTest)Let

ak

and

bkbe

serieswith

positive

terms.Iflim(ak

)

l,

wherel

is

somepositive

k

bk

number,then

ak

and

bk

convergeordivergetogether.

Proof

Choose

between0andl,since

ak

l,weknowforall

bk

ksufficientlylarge(forall

k

greaterthansomek0)|ak

l|.

bk

Forsuchk

wehavel

ak

l

,andthus(l

)bk

ak

(l

)bk

bk

thislastinequalityiswhatweneeded.

(1)If

ak

converges,

then

(l

)bk

converges,

and

thus

bkconverges.

(2)Ifbkconverges,then(l)bkconverges,andthus

akconverges.

Toapplythelimitcomparisontheoremtoaseriesak,wemustfirst

findaseriesbkofknownbehaviorforwhichakconvergestoa

bk

positivenumber.

ExDeterminewhethertheseriessinconvergesor

k

diverges.

Solution

Recallthatas

x

0,sinx

1

As

k

,

0

andthus

x

.

k

sin

k

1

.Since

k

diverges,so

sin(

k)diverges.

k

5

k

100

convergesor

2k2

k

9k

diverges.

Solution

For

largevalueofk,

5kdominatesthenumeratorand

2k2

kdominatesthedenominator,thus,for

suchk,

5

k

100

differs

2k2

k

9

k

littlefrom

5

k

5.Since

2k2

k

2k2

5

k

100

5

10k

2

k

200k

2

1

20

k

1

2k2

k

9k

2k2

100k2

k

45

k

1

9

2

2k

And

52

5

12converges,thisseriesconverges.

2k

2

k

Theorem

ak

and

bk

beserieswith

positiveterms

andsupposethusak

0

,then

bk

If

If

If

If

bk

ak

ak

bk

converges,thenakconverges.

diverges,thenbkdiverges.

converges,thenbkmayconvergeordiverge.

diverges,thenakmayconvergeordiverge.

[Parts(3)and(4)explainwhywestipulatedl0intheorem1.2.5]

Theorem1.2.7(theroottest,Cauchytest)letakbeaserieswith

nonnegativetermsandsupposethat

1

limkak

limakk

,if

<1,

ak

converges,

if

>1,

k

k

ak

diverges,if=1,thetestisinconclusive.

Proofwesupposefirst

<1andchoose

sothat

u

1.Since

1

1

(ak)k

,wehaveakk

,forallksufficientlylargethusak

kforall

ksufficiently

large

since

kconverges(a

geometric

serieswith

0<

1

akconverges.

Wesupposenowthat

11

(ak)k,wehave(ak)k

forallksufficientlylarge.

1andchooseso

thatu1

.since

forallksufficiently

large.Thus

k

ak

Since

k

diverges(ageometricserieswith

1

)thetheorem

akdiverges.

Toseetheinconclusivenessof

theroottestwhen

1

,notethat

1

1forboth

(ak)k

1and

1

1

(1

1

(1

1

1

:(ak)k

)k

)2

12

1,(ak)k

(

1)k

1

1

k2

k

k2

1

k

kk

kk

Thefirstseriesconverges,buttheseconddiverges.

1

convergesor

(lnk)k

diverges.

Solution

Fortheseries

1

,applyingtheroottestwehave

(lnk)k

1

lim(ak)k

k

lim

1

,theseriesconverges.

0

lnk

Determinewhetherseries

2k3

convergesordiverges.

(k)

Solution

Fortheseries

2kk,applyingtheroottest,wehave

(3)

1

3

2[1k]3

(ak)k

2(.

1)k

2

13

21.Sotheseriesdiverges.

k

k

Determineswhether

theseries

1

k

(1

)convergesor

k

diverges.

1)k

1

Solutioninthecaseof(1

,wehave(ak)k

k

applyingtheroottest,itisinconclusive.Butsinceak

(1

to1andnotto0,theseriesdiverges.

e

1

1

.If

1

k

)kconverges

k

Wecontinuetoconsideronlyserieswithterms0.Tocompare

suchaserieswithageometricseries,thesimplesttestisgivenbythe

ratiotesttheorem

Theorem1.2.8(Theratiotest,DAlemberttest)letakbeaseries

withpositivetermsandsupposethat

ak1

lim,

ak

If1,akconverges,if1,akdiverges.

Ifthe1,thetestisinconclusive.

Proof

wesupposefirstthat

1,sincelim

ak1

1

kak

SothereexistssomeintegerNsuchthatifnN

an1

C

Then

aN1

CaN,

aN

2

CaN1

C2aN

and

ingeneralby

an

induction

aNkCkaN,

Thus

N

k

c2aN......ckaN

an

aN

caN

n

N

aN(1

c

c2

c3

........ck)

aN

1

c

1

Thusineffect,wehavecomparedourserieswithageometricseries,andweknowthatthepartialsumsarebounded.Thisimpliesthatourseriesconverges.

Theratiotestisusuallyusedinthecaseofaserieswithpositivetermsan

suchthat

an1

1.

lim

n

an

nn

converges.

n13

Solution

welet

an

nn,then

an1

n

n11.3n

n

1.1

,thisratio

3

an

3

n

n

3

1

,andhencetheratiotestisapplicable:theseries

approaches

asn

3

converges.

kk

diverges.

k!

Solutionwehave

an1

(k1)k1k!

k1

k

1

k

an

(k1)!kk

(

k

)

(1

k

)

Solim

an1

lim(1

1

)k

e

n

an

k

k

Sincee1,theseriesdiverges.

1

diverges.

2k

1

1

Solutionsince

ak1

1

.2k

12k1

2

k

ak

2(k1)11

2k32

3

1

k

lim

ak1

lim

2

1.

2

k

k

ak

k

3

k

Thereforetheratiotestisinconclusive.Wehavetolookfurther.

Comparisonwiththeharmonicseriesshowsthattheseriesdiverges:

1

1

1

.

1

1

dverges.

2k1

2(k1)

2

,

2(k1)

k

1

Exercise1.2

1.Theordinarycomparisontestsaysthatif____andif

biconverges.

Thenakalsoconverges.

2.Assumethatak

0andbk

0.ThelimitcomparisonTestsaysthatif

0<____<+

then

ak

and

bkconvergesordivergetogether.

3.Let

lim

an1.TheratioTestsaysthataseries

akofpositiveterms

n

an

convergesif___,divergesif____andmaydoeitherif___.

Determinewhethertheseriesconvergesordiverges

4.

k

5.

1

6.

1

17.

1

k3

1

(2k

1)2

k

2k2

k

8.

tan1k

9.

1

10.

(

3

)

k

11.

ln

k

12.

10k

k2

1

2

4

k

k!

k3

1

k!

k2

2

k(2)

k

1

13.

14.

15.

16.

17.

kk

100k

k3

6k

3

1k.

18.

k!

104k

19.

Let

{an}beasequenceofpositivenumberandassumethat

an1

1

1foralln.showthattheseriesandiverges.

an

n

1.3Alternatingseries,Absoluteconvergenceandconditionalconvergence

Inthissectionweconsiderseriesthathavebothpositiveandnegativeterms.

Alternatingseriesandthetestsforconvergence

Theseriesof

theform

u1

u2

u3u4.......iscalledthealternating

series,whereun

0

foralln,heretwoexample:

1

1

1

1

1

1

....

(

1)n1

2

3

4

5

6

,

n1

n

1

2

3

4

5

....

(

1

2

3

4

5

6

1)n

1

n1

n

Weseefromtheseexamplesthatthenthtermofanalternatingseriesis

theforman

(1)n1unoran

(1)nun,whereunisapositivenumber(in

factun

an

.)

The

followingtestsaysthatifthetermsofanalternatingseries

decreasetoward0inabsolutevalue,thentheseriesconverges.

Theorem1.3.1(LeibnizTheorem)

Ifthealternatingseries

(1)nunsatisfy:

n1

(1)unun1(n=1,2);(2)limun0,

n

thentheseriesconverges.Moreover,itissumu1,andtheerrorrnmake

byusingsnofthefirstntermstoapproximatethesumsoftheseriesis

notmorethanun1,thatis,rnun1namelyrnssnun1.

oftheideabehindtheproof.Wefirstplots1u1onanumberline.

Tofinds2wesubtractu2,sos2istheleftofs1.Thentofinds3we

addu3,sos3istotherightofs2.But,sinceu3<u2,s3istotheleftofs1.

Continuinginthismanner,weseethatthepartialsumsoscillatebackandforth.Sinceun0,thesuccessivestepsarebecomingsmallerandsmaller.Theevenpartialsumss2,s4,s6,........areincreasingandtheoddpartial

sumss1,s3,s5,........aredecreasing.Thusitseemsplausiblethatbothare

convergingtosomenumbers,whichisthesumoftheseries.Therefore,inthefollowingproofweconsidertheevenandoddpartialsumsseparately

Wegivethefollowingproofofthealternatingseriestest.Wefirstconsidertheevenpartialsums:

s2

u1

u2

0,

Since

s4

s2

(u3

u4)s2,

since

u2u1

u4u

Ingeneral,

s2n

s2n2

(u2n1u2n)s2n2sinceu2nu2n1

Thus0s2

s4

s6

............s2n.............

Butwecanalsowrite

s2nu1(u2u3)(u4

u5)....(u2n2

u2n1)

u2n

Everyterminbracketsis

positive,sos2n

u1

foralln.therefore,the

sequence{s2n}ofevenpartialsumsisincreasingandboundedabove.Itis

thereforeconvergentbythemonotonicsequencetheorem.Let

’scallit

limits,thatis,

lims2n

s

Nowwecomputethelimitoftheoddpartial

n

sums:

lims2n1

lim(s2n

u2n1)

n

n

lims2n

limu2n

1

s

0(bycondition(2))

s

n

n

Since

both

the

even

and

oddpartial

sumsconverge

tos,

we

havelimsn

s,andsotheseriesisconvergent.

n

showsthat

the

following

alternating

harmonic

series

is

convergent:

1

1

1

..........

(

1)n1

1

3

4

n

.

2

n1

Solution

thealternatingharmonicseriessatisfies

(1)un

1

1

un

1;

(2)

limun

lim1

0

n

1

n

n

n

n

SotheseriesisconvergentbyalternatingseriesTest.

Testtheseries

(1)n3nforconvergenceanddivergence.

n1

4n1

Solutionthegivenseriesisalternatingbut

limun

lim

3n

lim

3

3

4n

1

4

1

0

n

n

n

4

n

Socondition(2)isnotsatisfied.Instead,welookatthelimitofthenth

termoftheseries:

liman

lim(

1)3nThislimit

doesnotexist,sotheseriesdivergesby

n

n

4n

1

thetestfordivergence.

Testtheseries

(

2

1)n

forconvergenceordivergence.

n1n

1

Solutionthegivenseriesisalternatingsowetrytoverifyconditions(1)and(2)ofthealternatingseriestest.

Unlikethesituationinexample1.3.1,itisnotobviousthesequence

givenby

un

n

isdecreasing.Ifweconsidertherelatedfunction

n2

1

x

f(x)

,we

easilyfindthat

x2

1

f'(x)

x2

1

2x2

1

x2

0whenverx2

1

.

(x2

1)2

(x2

1)2

Thusf

isdecreasingon[1,)

andsof(n)

f(n1).Therefore,{un}is

decreasing

Wemayalsoshowdirectlythatun1un,thatis

n

1

n

(n1)2

1

n2

1

Thisinequalityitequivalenttotheonewegetbycrossmultiplication:

(n

n

1

n

(n

1)(n2

1)n[(n

1)2

1]

1)2

1

n2

1

n3

n2

n1n3

2n2

2n1n2

n

Sincen

1,

we

know

thatthe

inequality

n2

n1is

true.Therefore,

un1

unand

{un}isdecreasing.

Condition(2)isreadilyverified:

n

1

limun

lim

lim

n

0,thusthegivenseriesisconvergentby

n

2

1

n

n

n

n

1

n

theAlternatingseriesTest.

Absoluteandconditionalconvergence

Inthissectionweconsiderseriesthathavebothpositiveandnegativeterms.Absoluteandconditionalconvergence.

akisnotserieswithpositive

k1

terms,iftheseriesakformedwiththeabsolutevalueoftheterms

k1

anconverges,theseriesakiscalledabsolutelyconvergent.Theseries

k1

akiscalledconditionallyconvergent,iftheseriesakconverges

k1k1

butakdiverges.

k1

ifakconverges,theakconverges.

Proofforeachk,akakak,andtherefore0akak2ak.if

akconverges,then2ak2akconverges,andtherefore,by

theorem1.2.3(theordinarycomparisontheorem),(akak)converges.

Sinceak(akak)akbythetheorem1.1.2(1),wecanconcludethat

akisconvergence.

TheabovetheoremwejustprovedsaysthatAbsolutelyconvergentseriesareconvergent.

Aswellshowpresently,theconverseisfalse.Thereareconvergent

series

that

are

notabsolutely

convergent;suchseriesarecalled

conditionallyconvergent.

Provethefollowingseriesisabsolutelyconvergent

1

1

1

1

1

.............

22

32

42

52

Proof

If

wereplacetermbyit

’absolutevalue,weobtaintheseries

1

1

1

.....

1

32

42

22

ThisisaPserieswithP=2.Itisthereforeconvergent.Thismeansthattheinitialseriesisabsolutelyconvergent.

provesthatthefollowingseriesisabsolutelyconvergent:

1

1

1

1

1

1

1

1

1

22

23

24

25

26

27

28.............

2

Proofifwereplaceeachtermbyitsabsolutevalue,weobtaintheseries:

1

1

1

1

1

1

1

1

1

22

23

24

25

26

27

28.............

2

Thisisaconvergentgeometricseries.Theinitialseriesisthereforeabsolutelyconvergent.

Ex.1.3.6provesthatthefollowingseriesisonlyconditionallyconvergent:

1

1

1

1

1

(

1)n

1

3

4

5

6.............

n

2

n1

Proof

thegivenseriesisconvergent.

Since(1)

un1

1

un

1

,(2)limun

lim

1

0,

n

1

n

n

n

n

Sothisseriesisconvergentbythealternatingseriestest,butitisnotabsolutely.

Convergent:ifwereplaceeachtermbyitisabsolutevalue,weobtainthedivergentharmonicseries:

111

1......................

234

Sothisseriesisonlyconditionallyconvergent.

Exercise1.3

(a)whatisthealternatingseries.

Underwhatconditionsdoesanalternatingseriesconverge?

Iftheseconditionaresatisfied,whatcanyousayaboutthe

remainderafternterms?

2.

if

un0forall

n,thealternatingseries

u1u2u3...........will

convergeprovidedthatthetermsaredecreasinginsizeand_____.

3.

If

akconverges,wesaythatseries

akconverges___;if

ak

converges,but

akdiverges,wesaythat

akconverges____.

Determinewhetherthefollowingseriesconvergeabsolutely

4.

sinn

5.

(

1)n

6.

(1)n

cos3n

n3

n2

1

n2

n

Determinewhetherthefollowingseriesconvergeandwhetherthey

convergeabsolutely.

7.

(

1)n1

8.

(

1)n

9.

(

1)

n

nl

n

n

n

n3

l

10.(

n1

n

11.

(

n

n

1)

2

1)

2

1

n

n

Testtheseseriesfor(1)absoluteconvergence(2)conditionalconvergence

12.

(1)k1

13.

k

k)

(1)(k1

2k1

14.

sin(

2)15.

k

k

(1)

2

k

4k

1.4powerseries

Theformula

u1

(x)u2(x)................

un(x)....

IscalledtheinfiniteseriesoffunctionontheintervalI,where

u1

(x),u2(x),................un(x)

.......areallfunctionsdefinedontheintervalI

Fortheseriesoffunction(1.4.1),thepointx0iscalledtheconvergent

pointifu1(x0)u2(x0),...............un(x0).......isconvergent.Wecalltheset

onwhichtheinfiniteseries(1.4.1)offunctionconvergesitsconvergentset.

powerseriesisaseriesinwhicheachtermisapowerfunction,namely,apowerseriesisaseriesoftheform

xn...

n0

Wherexisavariableandcnarcconstantscalledthecoefficientsof

theseries.

Theseries(1.4.2)isaseriesofconstantsthatwecantestforconvergenceordivergence.Apowerseriesmayconvergeforsomevaluesofxanddivergeforthevaluesofx.Thesumoftheseriesisafunction.

f(x)

c0

c1x

c2x2

...

cnxn

...

Whosedomainisthesetofallxinwhichtheseriesconverges.Notice

thatf.resemblesapolynomial,theonlydifferenceisthatfhas

infinitelymanyterms

Moregenerally,aseriesoftheform

cn(x

a)n

c0

c1(x

a)

c2

(x

a)2

........

n0

iscalledapowerseriesin(xa)orapowerseriescenteredataorapowerseriesabouta.Noticethatinwritingoutthetermcorrespondington0in()and(1.4.3).Wehaveadoptedtheconventionthat

(xa)01evenwhenxa.Noticealsothatwhenxaallofthetermsare0forn1andsothepowerseries(1.4.3)alwaysconverges

whenxa.

Sinceasimpletranslationconverts

ak(xa)k

into

akxk,wecan

k0

k

0

focusourattentiononpowerseriesoftheform

akxk

.

k

0

Whendetailedindexingisunnecessary,wewillomititand

writeakxk.Webegindiscussionwithadefinition.

Apowerseries

akxk

issaidtoconverge

(1)At

x1,iff

akx1kconverges

(2)Onthesetsiff

akxk

convergesfor

each

x

ins.Thefollowing

resultisfundamental

Theorem1.4.1AbelTheorem(1)Ifthepowerseriesakxkconverges

at

x1

0

thenitconvergesabsolutely.Forany

xthatx

x1(2)Ifthe

powerseries

akxk

divergesat

x1

0,thenitdivergesforany

xthat

x

x1.

Proof

If

akx1k

converges,

then

akx1k

0

In

particular,

fork

k

k

sufficientlylarge,akx1k

1Andthusakxk

akx1k

x

x

Forx

x1,

x1

x1

wehave

x

1.

x1

Theconvergenceof

akxk

followsbycomparisonwiththegeometric

series.This

proves

thefirst

statement,Supposenow

that

akx1k

diverges.By

the

previonsargument,There

can

not

exist

x

with

x

x1

suchthat

akxkconverge

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论