![微积分(下)英文教材_第1页](http://file4.renrendoc.com/view/8a3feb0a649ed58ada149fbf78d42c39/8a3feb0a649ed58ada149fbf78d42c391.gif)
![微积分(下)英文教材_第2页](http://file4.renrendoc.com/view/8a3feb0a649ed58ada149fbf78d42c39/8a3feb0a649ed58ada149fbf78d42c392.gif)
![微积分(下)英文教材_第3页](http://file4.renrendoc.com/view/8a3feb0a649ed58ada149fbf78d42c39/8a3feb0a649ed58ada149fbf78d42c393.gif)
![微积分(下)英文教材_第4页](http://file4.renrendoc.com/view/8a3feb0a649ed58ada149fbf78d42c39/8a3feb0a649ed58ada149fbf78d42c394.gif)
![微积分(下)英文教材_第5页](http://file4.renrendoc.com/view/8a3feb0a649ed58ada149fbf78d42c39/8a3feb0a649ed58ada149fbf78d42c395.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter1InfiniteSeries
Generally,forthegivensequence
a1,a2,a3......an,.......,
theexpression
formedbythesequencea1,a
2,
a3......an,.......,
a1
a2
a3
.....
an
.......,
iscalledtheinfiniteseriesoftheconstantsterm,denotedbyan,thatis
n1
an=a1a2a3.....an.......,
n1
Wherethenthtermissaidtobethegeneraltermoftheseries,moreover,thenthpartialsumoftheseriesisgivenby
Sna1a2a3.....an.
1.1Determinewhethertheinfiniteseriesconvergesordiverges.
Whileit’possibletoaddtwonumbers,threenumbers,ahundrednumbers,orevenamillionnumbers,it’impossibletoaddaninfinitenumberofnumbers.
Toformaninfiniteserieswebeginwithaninfinitesequenceofrealnumbers:a0,a1,a2,a3.....,wecannotformthesumofalltheak(thereis
aninfinitenumberoftheterm),butwecanformthepartialsums
0
S0
a0
ak
k
0
1
S1
a0
a1
ak
k0
2
S2
a0
a1
a2
ak
k
0
3
S3a0a1a2a3ak
k0
.
n
Sna0a1a2a3.......anak
k0
Ifthesequence{Sn}ofpartialsumshasafinitelimitL,
Wewrite
L
ak
k
0
andsaythattheseriesakconvergestoL.wecallLthesumof
k0
theseries.
Ifthelimitofthesequence{Sn}ofpartialsumsdon’texists,wesay
thattheseriesakdiverges.
k0
Remarkitisimportanttonotethatthesumofaseriesisnotasumintheorderingsense.Itisalimit.
EX1.1.1provethefollowingproposition:
Proposition1.1.1:
If
(2)If
1
1,
thenthe
thenthe
ak
k0
xk
k0
converges,and
diverges.
xk
1
;
k0
1x
Proof:thenthpartialsumofthegeometricseriesaktakesthe
k0
formSn
1x1
x2
x3.......
xn1Multiplicationbyxgives
xSn
x(1x1
x2
x3.......
xn1)=x1
x2
x3.......
xn1
xn
Subtractingthesecondequationfromthefirst,wefindthat
(1
x)Sn
1
xn.For
x
1,
thisgives
Sn
1
xn
1
x
Ifx
1,then
xn
0,andthisbyequation.
limSn
lim
1
xn
1
1
x
1
x
n
0
n0
Thisproves(1).
Nowletusprove(2).Forx=1,weuseequationanddevicethat
Snn,
Obviously,limSn,akdiverges.
nk0
Forx=-1weuseequationandwededuce
Ifnisodd,thenSn0,
Ifniseven,thenSn1.
ThesequenceofpartialsumSnlikethis0,-1,0,-1,0,-1..
Becausethelimitofsequence{Sn}ofpartialsumdoesnotexist.By
definition1.1.1,wehavetheseriesxKdiverges.(x=-1).
k0
Forx1withx1,weuseequation.Sinceinthisinstance,we
havelimSn
lim1
xn
n
n
1
x
.Thelimitofsequenceofpartialsumnotexist,
theseriesxkdiverges.
k0
Remarktheaboveseriesiscalledthegeometricseries.Itarisesin
somanydifferentcontextsthatitmeritsspecialattention.
geometricseriesisoneofthefewserieswherewecanactuallygiveanexplicitformulaforSn;acollapsingseriesisanother.
1
k0(k1)(k2)
Solutioninordertodeterminewhetherornotthisseriesconvergeswemustexaminethepartialsum.Since
1
1
1
(k1)(k2)
k1k
2
Weusepartialfractiondecompositiontowrite
1
1
1
1
Sn
2
2.
3..........
....
n(n1)
(n1)(n
2)
1.
1
1
)(
1
1
1
1
1
1
1
1
(
)
(
)
..............
(
)(
)
12
23
34
nn1
n1n2
1
1
1
1
1
1
1
1
1
1
2
2
3
34
........................
nn1n1
n2
Sinceallbutthefirstandlastoccurinpairswithoppositesigns,thesumcollapsestogive
Sn
1
1
n2
Obviously,asn
,Sn
1.thismeansthattheseriesconvergesto1.
limSn
lim(1
1
)
1
therefore
1
1
n
n
n
2
n0(k1)(k
2)
EX.1.1.3provesthefollowingtheorem:
Theorem1.1.1thekthtermofaconvergentseriestendsto0;namelyif
akConverges,bydefinitionwehavethelimitofthesequence{Sn}of
k0
partialsumsexists.Namely
n
limSn
lim
akl
n
n
0
k
Obviously
n
since
ansnsn1,wehave
limSn1
lim
ak
l.
n
n
0
k
liman
lim(Sn
Sn1)
limSn
limSn1
ll
0
n
n
n
n
Achangeinnotationgivesliman
0.
k
Thenextresultisanobviously,butimportant,consequenceof
(Adivergestest)iflimak0,orif
k
limandoesnotexist,thentheseriesakdiverges.
k
k0
limak0,andthen
k
akconverge.Infact,therearedivergentseriesforwhichlimak
0.For
k0
k
example,theseries
1
1
1
.............
1
.Since
itis
k1k
1
2
.....
n
sequence{Sn}ofpartialsum
{Sn}
1
1
1
n
is
unbounded.
So
1
2
.............
n
n
n
limSn
lim
n
,thereforetheseriesdiverges.
n
n
But
limak
lim
1
0
k
k
k
EX.1.1.3determinewhetherornottheseries:
k
0
1
2
3
4
..........Converges.
k0k
2
3
4
5
1
Solutionsincelimak
lim
k
lim
1
1
0,thisseriesdiverges.
1
k
k
k
1
k
1
k
1
k02k
Solution
1
the
given
series
is
a
geometric
series.
xk
(1)k,
and
x
1
1,byproposition
k0
k0
2
2
converges.
Solution2
Sn
1
1
1
.........
1
1,①
2
4
2
n
1
1
1
1
.........
1
1
,②
Sn
2
2
2
3
2
n1
2
n
2
2
①-②(1-
1
)Sn
1
1
,
Sn
2(1
1
n).
2
n
2
1n)
2
limSn
lim2(1
2
n
n
2
Bydefinitionofconvergesofseries,thisseriesconverges.
EX.1.1.5proofsthefollowingtheorem:
Theorem
If
the
series
k
0
akand
k0
bk
converges,then(1)
(akbk)alsoconverges,andisequalthesumofthetwoseries.
k0
(2)IfCisarealnumber,then
Cak
alsoconverges.Moreoverif
k0
aklthen
Cak
Cl.
k0
k0
Prooflet
n
n
n
n
Sn(1)
ak,Sn2
bkSn(3)
(akbk),Sn4
Cak
k0
k
0
k0
k0
NotethatSn(3)Sn(1)Sn(2)andSn(4)CSn(1)
Since
Then
limSn1
n
limSn(3)
n
l,limSn(2)
m,
n
lim(Sn(1)
Sn(2))limSn(1)
limSn(2)
lm
n
n
n
limSn(4)
n
limCSn(1)
n
ClimSn(1)Cl.
n
Theorem1.1.4(squeezetheorem)
Supposethat{an}and{cn}bothconvergetolandthatanbncnfor
nk,(kisafixedinteger),then{bn}
alsoconvergestol.
limsin3n
0
.
n
n
Solution
Forn
1
sin3n
1
1
1
1,
(
)
,since
lim()
0,andlim()0,
n
n
n
n
n
n
n
theresultfollowsbythesqueezetheorem.
Forsequenceof
variablesign,itishelpfultohavethefollowing
result.
provethatthefollowingtheoremholds.
Ifliman
0,thenliman
0,
n
n
Proof
since
an
an
an,
Namelythesqueezetheorem,weknowtheresultistrue.
Exercise1.1
(1)
Anexpressionoftheform
a1a2
a3
iscalled
(2)
A
seriesa1a2a3is
said
to
convergeifthesequence
Sn
converges,whereSn=
1.
Thegeometricseriesa
ar
ar2
convergesif
;inthiscase
thesumoftheseriesis
2.
Ifliman
0
,wecanbesurethattheseriesan
n
n1
3.
Evaluate
r(1
r)k,
0r
2.
k
0
4.
Evaluate
(1)kxk,
1
x
1.
k
0
5.
Showthat
ln
k
diverges.
k
1
k1
Findthesumsoftheseries6-11
6.
10.
1
7.
1
8.
1
9.
3
k
3(k
1)(k
2)
k
12k(k1)
k1k(k3)
k010k
3k
4k
11.
2k
3
k0
5k
k
03k
12.
Derive
the
following
results
from
the
geometric
series
(1)kx2k
1
2,
|x|1.
k
0
1x
Testthefollowingseriesforconvergence:
13.
n
14.
1
n11n
k02k3
1.2SeriesWithPositiveTerms
ThecomparisonTest
Throughoutthissection,weshallassumethatournumbersanarex0,
thenthepartialsum
Sna1a2anareincreasing,i.e.
S1S2S3SnSn1
Iftheyaretoapproachalimitatall,theycannotbecomearbitrarily
large.ThusinthatcasethereisanumberBsuchthatSnBforalln.
SuchanumberBiscalledanupperbound.ByaleastupperboundwemeananumberSwhichisanupperbound,andsuchthateveryupperboundBisS.Wetakeforgrantedthataleastupperboundexists.ThecollectionofnumbersShasthereforealeastupperbound,i.e.,theren
isasmallestnumberssuchthat
Sn
Sforalln.Inthatcase,thepartial
sums
Sn
approach
S
asalimit.
In
otherwords,givenanypositive
number
0,wehave
S
Sn
Sforallnsufficientlylarge.
S1
S2
Sn
S
ThissimplyexpressesthefactSistheleastofallupperboundsforourcollectionofnumbersSn.Weexpressthisasatheorem.
Theorem
Letan(n1,2,)beasequenceofnumbers
0andletSn
a1a2
an.IfthesequenceofnumbersSnisbounded,
thenitapproachesalimitS,whichisitsleastupperbound.
Theorem1.2.2Aserieswithnonnegativetermsconvergesifandonlyifthesequenceofpartialsumsisboundedabove.
Theorem1.2.1and1.2.2giveusaveryusefulcriteriontodeterminewhenaserieswithpositivetermsconverges.
Theconvergenceordivergenceofaserieswithnonnegativetermsis
usuallydeducedbycomparisonwithaseriesofknownbehavior.
Theorem1.2.3(TheOrdinaryComparisonTest)Let
an
and
n1
bnbetwoseries,with
an
0forallnand
bn
0foralln.Assumethat
n1
thereisanumbersc
0,
suchthat
an
cbn
for
all
n,andthat
bn
n1
converges,then
anconverges,and
an
cbn.
n1
n1
n1
Proof:
Wehave
a1a2
ancb1
cb2cbnc(b1
b2
bn)cbn.
n1
Thismeansthat
c
n
isaboundforthepartialsums1
a
2
n.
b
a
a
n1
Theleastupperboundofthesesumsisthereforecbn,thusprovingour
n1
theorem.
Theorem1.2.3hasananaloguetoshowthataseriesdoesnotconverge.
Theorem1.2.4(Ordinary
ComparisonTest)Let
an
and
bn
be
n1
n1
twoseries,withanandbn0foralln.Assumethatthereisanumber
c0suchthat
an
cbn
forallnsufficientlylarge,and
bn
doesnot
n1
converge,then
an
diverges.
n1
Proof.
Assume
an
cbn
for
n
n0
,
since
bn
diverges,we
can
n1
makethepartialsum
N
bn
bn
bn
0
1
bN
n
n0
0
N
N
N
arbitrarilylargeasNbecomesarbitrarilylarge.But
an
cbncbn.
nn0
nn0
nn0
N
aNarearbitrarily
largeasN
Hencethepartialsum
an
a1
a2
n
1
becomesarbitrarilylarge,arehenceandiverges,aswastobeshown.
n1
Remarkonnotationyouhaveeasilyseenthatforeachj0,ak
k0
convergesiff
akconverges.Thistellsusthat,indeterminingwhether
kj1
ornotaseriesconverges,itdoesnotmatterwherewebeginthe
summation,wheredetailedindexingwould
contributenothing,wewill
omit
itandwrite
withoutspecifyingwherethesummationbegins.
For
instance,it
makessensetoyouthat
12convergesand
1
k
k
divergeswithoutspecifyingwherewebeginthesummation.Butintheconvergentcaseitdoes,however,affectthesum.Thusforexample
1
2,
1
1,
1
1,andsoforth.
k02k
k12k
k22k
2
12
converges.
n1n
Solution
Letuslookattheseries:
1
1
1
1
1
1
1
1
1
12
22
32
42
52
72
82
152
162
Welookatthegroupsoftermsasindicated.Ineachgroupofterms,ifwedecreasethedenominatorineachterm,thenweincreasethefraction.Wereplace3by2,then4,5,6,7by4,thenwereplacethenumbersfrom8to15by8,andsoforth.Ourpartialsumsthereforelessthanorequalto
1
1
1
1
1
1
1
1
andwenotethat2occurs
12
22
22
42
42
42
82
82
twice,4occursfourtimes,8occurseighttimes,andsoforth.Ourpartial
sumarethereforelessthanorequalto
1
1
1
1
1
1
1
1
12
22
22
42
42
42
82
82
andwenotethat2occurstwice,4occursfourtimes,8occurseighttimes,andsoforth.Hencethepartialsumsarelessthanorequalto
1
2
4
8
1
1
1
?
=1+
12
22
42
82
2
4
8
Thusourpartialsumsarelessthanorequaltothoseofthegeometricseriesandarebounded.Henceourseriesconverges.
Generallywehavethefollowingresult:
1
1
1
1
1
1
,wherepisaconstant,
Theseriesn1np
2p
3p
4p
np
iscalledap-series.
p
1,thep-seriesconverges;andifp1,then
thep-seriesdiverges.
n2
converges.
3
n1n
1
SolutionWewrite
n2
1
1
1(1
1
)
.Thenweseethat
n3
n
1
n
1
1
n2
n3
n2
1
11
1
n3
1
2n
2n.Since
n1n
doesnotconverge,itfollowsthattheseries
n2
doesnotconvergeeither.Namelythisseriesdiverges.
n1n3
1
n2
7
converges.
n12n4
n3
Proof:
Indeedwecanwrite
n
2
7
n2(1
7
2)
1
1
7
2
n
n
2n4
4(2(1
3
4)n2
2(1
3
n3n
)3
n
n
)3
4
n
n
Fornsufficientlylarge,thefactor
1
7
2
iscertainlybounded,
2(1
n
3
)3
4
n
n
andinfactisnear1/2.Hencewecancompareourserieswith
1
n2to
seeconverges,because
12
convergesandthefactorisbounded.
n
1
diverges.
ln(k
b)
Solution
1Weknow
that
ask
,
lnk
0
.
It
followsthat
k
ln(k
b)
0
,and
thus
that
ln(k
b)
ln(k
b)k
b
0.
Thus
for
k
k
b
k
k
b
k
sufficiently
large,
ln(k
b)
k
and
1
1
.
Since
1
diverges,
k
ln(k
b)
k
wecanconcludethat
1
diverges.
ln(k
b)
Solution
2Another
way
to
showthat
ln(k
b)
k
forsufficiently
largek
is
toexaminethe
function
f(x)
xln(x
b)
.At
x
3
the
functionispositive:
f(3)3ln932.1970
Sincef'(x)
1
1
b
0for
allx
0,
f(x)
0
forall
x
3
.It
follows
x
that
ln(x
b)x
forall
x
3.
Wecomenowtoasomewhatmorecomparisontheorem.Ourproof
reliesonthebasiccomparisontheorem.
Theorem1.2.5(TheLimitComparisonTest)Let
ak
and
bkbe
serieswith
positive
terms.Iflim(ak
)
l,
wherel
is
somepositive
k
bk
number,then
ak
and
bk
convergeordivergetogether.
Proof
Choose
between0andl,since
ak
l,weknowforall
bk
ksufficientlylarge(forall
k
greaterthansomek0)|ak
l|.
bk
Forsuchk
wehavel
ak
l
,andthus(l
)bk
ak
(l
)bk
bk
thislastinequalityiswhatweneeded.
(1)If
ak
converges,
then
(l
)bk
converges,
and
thus
bkconverges.
(2)Ifbkconverges,then(l)bkconverges,andthus
akconverges.
Toapplythelimitcomparisontheoremtoaseriesak,wemustfirst
findaseriesbkofknownbehaviorforwhichakconvergestoa
bk
positivenumber.
ExDeterminewhethertheseriessinconvergesor
k
diverges.
Solution
Recallthatas
x
0,sinx
1
As
k
,
0
andthus
x
.
k
sin
k
1
.Since
k
diverges,so
sin(
k)diverges.
k
5
k
100
convergesor
2k2
k
9k
diverges.
Solution
For
largevalueofk,
5kdominatesthenumeratorand
2k2
kdominatesthedenominator,thus,for
suchk,
5
k
100
differs
2k2
k
9
k
littlefrom
5
k
5.Since
2k2
k
2k2
5
k
100
5
10k
2
k
200k
2
1
20
k
1
2k2
k
9k
2k2
100k2
k
45
k
1
9
2
2k
And
52
5
12converges,thisseriesconverges.
2k
2
k
Theorem
ak
and
bk
beserieswith
positiveterms
andsupposethusak
0
,then
bk
If
If
If
If
bk
ak
ak
bk
converges,thenakconverges.
diverges,thenbkdiverges.
converges,thenbkmayconvergeordiverge.
diverges,thenakmayconvergeordiverge.
[Parts(3)and(4)explainwhywestipulatedl0intheorem1.2.5]
Theorem1.2.7(theroottest,Cauchytest)letakbeaserieswith
nonnegativetermsandsupposethat
1
limkak
limakk
,if
<1,
ak
converges,
if
>1,
k
k
ak
diverges,if=1,thetestisinconclusive.
Proofwesupposefirst
<1andchoose
sothat
u
1.Since
1
1
(ak)k
,wehaveakk
,forallksufficientlylargethusak
kforall
ksufficiently
large
since
kconverges(a
geometric
serieswith
0<
1
akconverges.
Wesupposenowthat
11
(ak)k,wehave(ak)k
forallksufficientlylarge.
1andchooseso
thatu1
.since
forallksufficiently
large.Thus
k
ak
Since
k
diverges(ageometricserieswith
1
)thetheorem
akdiverges.
Toseetheinconclusivenessof
theroottestwhen
1
,notethat
1
1forboth
(ak)k
1and
1
1
(1
1
(1
1
1
:(ak)k
)k
)2
12
1,(ak)k
(
1)k
1
1
k2
k
k2
1
k
kk
kk
Thefirstseriesconverges,buttheseconddiverges.
1
convergesor
(lnk)k
diverges.
Solution
Fortheseries
1
,applyingtheroottestwehave
(lnk)k
1
lim(ak)k
k
lim
1
,theseriesconverges.
0
lnk
Determinewhetherseries
2k3
convergesordiverges.
(k)
Solution
Fortheseries
2kk,applyingtheroottest,wehave
(3)
1
3
2[1k]3
(ak)k
2(.
1)k
2
13
21.Sotheseriesdiverges.
k
k
Determineswhether
theseries
1
k
(1
)convergesor
k
diverges.
1)k
1
Solutioninthecaseof(1
,wehave(ak)k
k
applyingtheroottest,itisinconclusive.Butsinceak
(1
to1andnotto0,theseriesdiverges.
e
1
1
.If
1
k
)kconverges
k
Wecontinuetoconsideronlyserieswithterms0.Tocompare
suchaserieswithageometricseries,thesimplesttestisgivenbythe
ratiotesttheorem
Theorem1.2.8(Theratiotest,DAlemberttest)letakbeaseries
withpositivetermsandsupposethat
ak1
lim,
ak
If1,akconverges,if1,akdiverges.
Ifthe1,thetestisinconclusive.
Proof
wesupposefirstthat
1,sincelim
ak1
1
kak
SothereexistssomeintegerNsuchthatifnN
an1
C
Then
aN1
CaN,
aN
2
CaN1
C2aN
and
ingeneralby
an
induction
aNkCkaN,
Thus
N
k
c2aN......ckaN
an
aN
caN
n
N
aN(1
c
c2
c3
........ck)
aN
1
c
1
Thusineffect,wehavecomparedourserieswithageometricseries,andweknowthatthepartialsumsarebounded.Thisimpliesthatourseriesconverges.
Theratiotestisusuallyusedinthecaseofaserieswithpositivetermsan
suchthat
an1
1.
lim
n
an
nn
converges.
n13
Solution
welet
an
nn,then
an1
n
n11.3n
n
1.1
,thisratio
3
an
3
n
n
3
1
,andhencetheratiotestisapplicable:theseries
approaches
asn
3
converges.
kk
diverges.
k!
Solutionwehave
an1
(k1)k1k!
k1
k
1
k
an
(k1)!kk
(
k
)
(1
k
)
Solim
an1
lim(1
1
)k
e
n
an
k
k
Sincee1,theseriesdiverges.
1
diverges.
2k
1
1
Solutionsince
ak1
1
.2k
12k1
2
k
ak
2(k1)11
2k32
3
1
k
lim
ak1
lim
2
1.
2
k
k
ak
k
3
k
Thereforetheratiotestisinconclusive.Wehavetolookfurther.
Comparisonwiththeharmonicseriesshowsthattheseriesdiverges:
1
1
1
.
1
1
dverges.
2k1
2(k1)
2
,
2(k1)
k
1
Exercise1.2
1.Theordinarycomparisontestsaysthatif____andif
biconverges.
Thenakalsoconverges.
2.Assumethatak
0andbk
0.ThelimitcomparisonTestsaysthatif
0<____<+
then
ak
and
bkconvergesordivergetogether.
3.Let
lim
an1.TheratioTestsaysthataseries
akofpositiveterms
n
an
convergesif___,divergesif____andmaydoeitherif___.
Determinewhethertheseriesconvergesordiverges
4.
k
5.
1
6.
1
17.
1
k3
1
(2k
1)2
k
2k2
k
8.
tan1k
9.
1
10.
(
3
)
k
11.
ln
k
12.
10k
k2
1
2
4
k
k!
k3
1
k!
k2
2
k(2)
k
1
13.
14.
15.
16.
17.
kk
100k
k3
6k
3
1k.
18.
k!
104k
19.
Let
{an}beasequenceofpositivenumberandassumethat
an1
1
1foralln.showthattheseriesandiverges.
an
n
1.3Alternatingseries,Absoluteconvergenceandconditionalconvergence
Inthissectionweconsiderseriesthathavebothpositiveandnegativeterms.
Alternatingseriesandthetestsforconvergence
Theseriesof
theform
u1
u2
u3u4.......iscalledthealternating
series,whereun
0
foralln,heretwoexample:
1
1
1
1
1
1
....
(
1)n1
2
3
4
5
6
,
n1
n
1
2
3
4
5
....
(
1
2
3
4
5
6
1)n
1
n1
n
Weseefromtheseexamplesthatthenthtermofanalternatingseriesis
theforman
(1)n1unoran
(1)nun,whereunisapositivenumber(in
factun
an
.)
The
followingtestsaysthatifthetermsofanalternatingseries
decreasetoward0inabsolutevalue,thentheseriesconverges.
Theorem1.3.1(LeibnizTheorem)
Ifthealternatingseries
(1)nunsatisfy:
n1
(1)unun1(n=1,2);(2)limun0,
n
thentheseriesconverges.Moreover,itissumu1,andtheerrorrnmake
byusingsnofthefirstntermstoapproximatethesumsoftheseriesis
notmorethanun1,thatis,rnun1namelyrnssnun1.
oftheideabehindtheproof.Wefirstplots1u1onanumberline.
Tofinds2wesubtractu2,sos2istheleftofs1.Thentofinds3we
addu3,sos3istotherightofs2.But,sinceu3<u2,s3istotheleftofs1.
Continuinginthismanner,weseethatthepartialsumsoscillatebackandforth.Sinceun0,thesuccessivestepsarebecomingsmallerandsmaller.Theevenpartialsumss2,s4,s6,........areincreasingandtheoddpartial
sumss1,s3,s5,........aredecreasing.Thusitseemsplausiblethatbothare
convergingtosomenumbers,whichisthesumoftheseries.Therefore,inthefollowingproofweconsidertheevenandoddpartialsumsseparately
Wegivethefollowingproofofthealternatingseriestest.Wefirstconsidertheevenpartialsums:
s2
u1
u2
0,
Since
s4
s2
(u3
u4)s2,
since
u2u1
u4u
Ingeneral,
s2n
s2n2
(u2n1u2n)s2n2sinceu2nu2n1
Thus0s2
s4
s6
............s2n.............
Butwecanalsowrite
s2nu1(u2u3)(u4
u5)....(u2n2
u2n1)
u2n
Everyterminbracketsis
positive,sos2n
u1
foralln.therefore,the
sequence{s2n}ofevenpartialsumsisincreasingandboundedabove.Itis
thereforeconvergentbythemonotonicsequencetheorem.Let
’scallit
limits,thatis,
lims2n
s
Nowwecomputethelimitoftheoddpartial
n
sums:
lims2n1
lim(s2n
u2n1)
n
n
lims2n
limu2n
1
s
0(bycondition(2))
s
n
n
Since
both
the
even
and
oddpartial
sumsconverge
tos,
we
havelimsn
s,andsotheseriesisconvergent.
n
showsthat
the
following
alternating
harmonic
series
is
convergent:
1
1
1
..........
(
1)n1
1
3
4
n
.
2
n1
Solution
thealternatingharmonicseriessatisfies
(1)un
1
1
un
1;
(2)
limun
lim1
0
n
1
n
n
n
n
SotheseriesisconvergentbyalternatingseriesTest.
Testtheseries
(1)n3nforconvergenceanddivergence.
n1
4n1
Solutionthegivenseriesisalternatingbut
limun
lim
3n
lim
3
3
4n
1
4
1
0
n
n
n
4
n
Socondition(2)isnotsatisfied.Instead,welookatthelimitofthenth
termoftheseries:
liman
lim(
1)3nThislimit
doesnotexist,sotheseriesdivergesby
n
n
4n
1
thetestfordivergence.
Testtheseries
(
2
1)n
forconvergenceordivergence.
n1n
1
Solutionthegivenseriesisalternatingsowetrytoverifyconditions(1)and(2)ofthealternatingseriestest.
Unlikethesituationinexample1.3.1,itisnotobviousthesequence
givenby
un
n
isdecreasing.Ifweconsidertherelatedfunction
n2
1
x
f(x)
,we
easilyfindthat
x2
1
f'(x)
x2
1
2x2
1
x2
0whenverx2
1
.
(x2
1)2
(x2
1)2
Thusf
isdecreasingon[1,)
andsof(n)
f(n1).Therefore,{un}is
decreasing
Wemayalsoshowdirectlythatun1un,thatis
n
1
n
(n1)2
1
n2
1
Thisinequalityitequivalenttotheonewegetbycrossmultiplication:
(n
n
1
n
(n
1)(n2
1)n[(n
1)2
1]
1)2
1
n2
1
n3
n2
n1n3
2n2
2n1n2
n
Sincen
1,
we
know
thatthe
inequality
n2
n1is
true.Therefore,
un1
unand
{un}isdecreasing.
Condition(2)isreadilyverified:
n
1
limun
lim
lim
n
0,thusthegivenseriesisconvergentby
n
2
1
n
n
n
n
1
n
theAlternatingseriesTest.
Absoluteandconditionalconvergence
Inthissectionweconsiderseriesthathavebothpositiveandnegativeterms.Absoluteandconditionalconvergence.
akisnotserieswithpositive
k1
terms,iftheseriesakformedwiththeabsolutevalueoftheterms
k1
anconverges,theseriesakiscalledabsolutelyconvergent.Theseries
k1
akiscalledconditionallyconvergent,iftheseriesakconverges
k1k1
butakdiverges.
k1
ifakconverges,theakconverges.
Proofforeachk,akakak,andtherefore0akak2ak.if
akconverges,then2ak2akconverges,andtherefore,by
theorem1.2.3(theordinarycomparisontheorem),(akak)converges.
Sinceak(akak)akbythetheorem1.1.2(1),wecanconcludethat
akisconvergence.
TheabovetheoremwejustprovedsaysthatAbsolutelyconvergentseriesareconvergent.
Aswellshowpresently,theconverseisfalse.Thereareconvergent
series
that
are
notabsolutely
convergent;suchseriesarecalled
conditionallyconvergent.
Provethefollowingseriesisabsolutelyconvergent
1
1
1
1
1
.............
22
32
42
52
Proof
If
wereplacetermbyit
’absolutevalue,weobtaintheseries
1
1
1
.....
1
32
42
22
ThisisaPserieswithP=2.Itisthereforeconvergent.Thismeansthattheinitialseriesisabsolutelyconvergent.
provesthatthefollowingseriesisabsolutelyconvergent:
1
1
1
1
1
1
1
1
1
22
23
24
25
26
27
28.............
2
Proofifwereplaceeachtermbyitsabsolutevalue,weobtaintheseries:
1
1
1
1
1
1
1
1
1
22
23
24
25
26
27
28.............
2
Thisisaconvergentgeometricseries.Theinitialseriesisthereforeabsolutelyconvergent.
Ex.1.3.6provesthatthefollowingseriesisonlyconditionallyconvergent:
1
1
1
1
1
(
1)n
1
3
4
5
6.............
n
2
n1
Proof
thegivenseriesisconvergent.
Since(1)
un1
1
un
1
,(2)limun
lim
1
0,
n
1
n
n
n
n
Sothisseriesisconvergentbythealternatingseriestest,butitisnotabsolutely.
Convergent:ifwereplaceeachtermbyitisabsolutevalue,weobtainthedivergentharmonicseries:
111
1......................
234
Sothisseriesisonlyconditionallyconvergent.
Exercise1.3
(a)whatisthealternatingseries.
Underwhatconditionsdoesanalternatingseriesconverge?
Iftheseconditionaresatisfied,whatcanyousayaboutthe
remainderafternterms?
2.
if
un0forall
n,thealternatingseries
u1u2u3...........will
convergeprovidedthatthetermsaredecreasinginsizeand_____.
3.
If
akconverges,wesaythatseries
akconverges___;if
ak
converges,but
akdiverges,wesaythat
akconverges____.
Determinewhetherthefollowingseriesconvergeabsolutely
4.
sinn
5.
(
1)n
6.
(1)n
cos3n
n3
n2
1
n2
n
Determinewhetherthefollowingseriesconvergeandwhetherthey
convergeabsolutely.
7.
(
1)n1
8.
(
1)n
9.
(
1)
n
nl
n
n
n
n3
l
10.(
n1
n
11.
(
n
n
1)
2
1)
2
1
n
n
Testtheseseriesfor(1)absoluteconvergence(2)conditionalconvergence
12.
(1)k1
13.
k
k)
(1)(k1
2k1
14.
sin(
2)15.
k
k
(1)
2
k
4k
1.4powerseries
Theformula
u1
(x)u2(x)................
un(x)....
IscalledtheinfiniteseriesoffunctionontheintervalI,where
u1
(x),u2(x),................un(x)
.......areallfunctionsdefinedontheintervalI
Fortheseriesoffunction(1.4.1),thepointx0iscalledtheconvergent
pointifu1(x0)u2(x0),...............un(x0).......isconvergent.Wecalltheset
onwhichtheinfiniteseries(1.4.1)offunctionconvergesitsconvergentset.
powerseriesisaseriesinwhicheachtermisapowerfunction,namely,apowerseriesisaseriesoftheform
xn...
n0
)
Wherexisavariableandcnarcconstantscalledthecoefficientsof
theseries.
Theseries(1.4.2)isaseriesofconstantsthatwecantestforconvergenceordivergence.Apowerseriesmayconvergeforsomevaluesofxanddivergeforthevaluesofx.Thesumoftheseriesisafunction.
f(x)
c0
c1x
c2x2
...
cnxn
...
Whosedomainisthesetofallxinwhichtheseriesconverges.Notice
thatf.resemblesapolynomial,theonlydifferenceisthatfhas
infinitelymanyterms
Moregenerally,aseriesoftheform
cn(x
a)n
c0
c1(x
a)
c2
(x
a)2
........
n0
iscalledapowerseriesin(xa)orapowerseriescenteredataorapowerseriesabouta.Noticethatinwritingoutthetermcorrespondington0in()and(1.4.3).Wehaveadoptedtheconventionthat
(xa)01evenwhenxa.Noticealsothatwhenxaallofthetermsare0forn1andsothepowerseries(1.4.3)alwaysconverges
whenxa.
Sinceasimpletranslationconverts
ak(xa)k
into
akxk,wecan
k0
k
0
focusourattentiononpowerseriesoftheform
akxk
.
k
0
Whendetailedindexingisunnecessary,wewillomititand
writeakxk.Webegindiscussionwithadefinition.
Apowerseries
akxk
issaidtoconverge
(1)At
x1,iff
akx1kconverges
(2)Onthesetsiff
akxk
convergesfor
each
x
ins.Thefollowing
resultisfundamental
Theorem1.4.1AbelTheorem(1)Ifthepowerseriesakxkconverges
at
x1
0
thenitconvergesabsolutely.Forany
xthatx
x1(2)Ifthe
powerseries
akxk
divergesat
x1
0,thenitdivergesforany
xthat
x
x1.
Proof
If
akx1k
converges,
then
akx1k
0
In
particular,
fork
k
k
sufficientlylarge,akx1k
1Andthusakxk
akx1k
x
x
Forx
x1,
x1
x1
wehave
x
1.
x1
Theconvergenceof
akxk
followsbycomparisonwiththegeometric
series.This
proves
thefirst
statement,Supposenow
that
akx1k
diverges.By
the
previonsargument,There
can
not
exist
x
with
x
x1
suchthat
akxkconverge
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022火电厂铁路专用线安全管理标准
- 第十六章 区域发展 第2讲 产业转型地区的结构优化高考地理第一轮复习课件
- (高清版)DB11∕T 2385-2024 外保温复合装饰线应用技术规程
- 《信号调制解调》课件
- 2025至2031年中国抽油机专用皮带转离合器行业投资前景及策略咨询研究报告
- 《频度副词讲解》课件
- 2025至2031年中国TPE密封条行业投资前景及策略咨询研究报告
- 《母亲节主题班会》课件
- 医院药学工作转型课件
- 辐射环境监测人员持证上岗考核习题集复习测试有答案
- 国际工程项目管理课件
- 珠海市政工程竣工档案验收指南(试行上)
- 2024年广东省广州市中考英语试卷附答案
- 2024年春九年级化学下册 第九单元 溶液教案 (新版)新人教版
- 良性前列腺增生症患者围手术期的护理
- DL∕T 1610-2016 变电站机器人巡检系统通 用技术条件
- GB/T 44143-2024科技人才评价规范
- 《混合动力汽车用变速器效率台架试验方法》
- 对医院领导的批评意见怎么写更合适范文(6篇)
- 裕龙岛炼化一体化项目(一期)环境影响报告
- 2024年北京卷英语真题
评论
0/150
提交评论