初中数学教学课件:2422直线和圆位置关系(第3课时)(人教版九年级上)_第1页
初中数学教学课件:2422直线和圆位置关系(第3课时)(人教版九年级上)_第2页
初中数学教学课件:2422直线和圆位置关系(第3课时)(人教版九年级上)_第3页
初中数学教学课件:2422直线和圆位置关系(第3课时)(人教版九年级上)_第4页
初中数学教学课件:2422直线和圆位置关系(第3课时)(人教版九年级上)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学教学课件:2422直线和圆位置关系(第3课时)(人教版九年级上)第一页,共26页。24.2.2直线和圆的位置关系第3课时第二页,共26页。1.理解切线长的概念,掌握切线长定理.2.学会运用切线长定理解有关问题.3.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.第三页,共26页。BA1、如何过⊙O外一点P画出⊙O的切线?2、这样的切线能画出几条?如下左图,借助三角板,我们可以画出PA是⊙O的切线.3、如果∠P=50°,求∠AOB的度数.50°130°第四页,共26页。

OABP思考:已画出切线PA、PB,A、B为切点,则∠OAP=90°,连接OP,可知A、B除了在⊙O上,还在怎样的圆上?如何用圆规和直尺作出这两条切线呢?.第五页,共26页。尺规作图:过⊙O外一点作⊙O的切线O·PABO第六页,共26页。在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长.·OPAB切线与切线长是一回事吗?它们有什么区别与联系呢?切线长概念第七页,共26页。

切线和切线长是两个不同的概念:1、切线是一条与圆相切的直线,不能度量;2、切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.OPAB比一比:切线与切线长第八页,共26页。

OABP12折一折思考:已知⊙O切线PA、PB,A、B为切点,把圆沿着直线OP对折,你能发现什么?第九页,共26页。请证明你所发现的结论.APOBPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB证一证第十页,共26页。切线长定理

∵PA、PB分别切⊙O于A、B,∴PA=PB,OP平分∠APB.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.几何语言:OPAB第十一页,共26页。反思:切线长定理为证明线段相等、角相等提供新的方法PA=PB∠OPA=∠OPB第十二页,共26页。APOB若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分ABM证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB,∠OPA=∠OPB.∴△PAB是等腰三角形,PM为顶角的平分线.∴OP垂直平分AB.试一试第十三页,共26页。APO.B若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.CA=CB证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB,∠OPA=∠OPB.∴PC=PC.∴△PCA≌△PCB,∴AC=BC.C第十四页,共26页。.PBAO(3)连结圆心和圆外一点(2)连结两切点(1)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形.想一想第十五页,共26页。探究:PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于点D、E,交AB于点C.BAPOCE(1)写出图中所有的垂直关系OA⊥PA,OB⊥PBAB⊥OP(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPCD第十六页,共26页。△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP(4)写出图中所有的等腰三角形△ABP△AOB(3)写出图中所有的全等三角形BAPOCED第十七页,共26页。【例1】△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.【解析】设AF=x(cm),则AE=x(cm)∴CD=CE=AC-AE=(13-x)cmBD=BF=AB-AF=(9-x)cm由BD+CD=BC可得(13-x)+(9-x)=14解得x=4∴AF=4(cm),BD=5(cm),CE=9(cm).例题第十八页,共26页。1.(口答)如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求△PCD的周长.(2)如果∠P=46°,求∠COD的度数.C·OPBDAE跟踪训练答案:14cm67°第十九页,共26页。【例2】如图,四边形ABCD的边AB、BC、CD、DA和⊙O分别相切于点L、M、N、P,求证:AD+BC=AB+CD证明:由切线长定理得AL=AP,LB=MB,NC=MC,DN=DP∴AL+LB+NC+DN=AP+MB+MC+DP即AB+CD=AD+BC补充:圆的外切四边形的两组对边的和相等.DLMNABCOP例题第二十页,共26页。1.如果PA=4cm,PD=2cm,求半径OA的长.42xx【解析】设OA=xcm;在Rt△OAP中,OA=xcm,OP=OD+PD=(x+2)cm,PA=4cm,由勾股定理,得PA2+OA2=OP2,即42+x2=(x+2)2整理,得x=3所以,半径OA的长为3cm.跟踪训练第二十一页,共26页。ABCDEF2.设△ABC的边BC=8,AC=11,AB=15,内切圆I和BC、AC、AB分别相切于点D、E、F.求AE、CD、BF的长..Ixyz【解析】设AE=x,BF=y,CD=z

xyz答:AE、CD、BF的长分别是9、2、6.

x+y=15y+z=8x+z=11x=9y=6z=2则解得第二十二页,共26页。1.(珠海·中考)如图,PA、PB是⊙O的切线,切点分别是A、B,如果∠P=60°,那么∠AOB等于()A.60°B.90° C.120°D.150°C第二十三页,共26页。2.(杭州·中考)如图,正三角形的内切圆半径为1,那么这个正三角形的边长为()A.2 B.3C.D. 【解析】选D.如图所示,连接OA、OB,则三角形AOB是直角三角形,且∠OBA=90°,∠OAB=30°,又因为内切圆半径为1,利用勾股定理求得AB=那么这个正三角形的边长为.BA第二十四页,共26页。3.已知:如图,PA、PB是⊙O的切线,切点分别是A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论