2022-2023学年江西省萍乡市成考专升本数学(理)自考模拟考试(含答案带解析)_第1页
2022-2023学年江西省萍乡市成考专升本数学(理)自考模拟考试(含答案带解析)_第2页
2022-2023学年江西省萍乡市成考专升本数学(理)自考模拟考试(含答案带解析)_第3页
2022-2023学年江西省萍乡市成考专升本数学(理)自考模拟考试(含答案带解析)_第4页
2022-2023学年江西省萍乡市成考专升本数学(理)自考模拟考试(含答案带解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年江西省萍乡市成考专升本数学(理)自考模拟考试(含答案带解析)学校:________班级:________姓名:________考号:________

一、单选题(30题)1.

2.

3.已知α∩β=a,b丄β在a内的射影是b’,那么b’和a的关系是()

A.b’//aB.b’丄aC.b’与a是异面直线D.b’与a相交成锐角

4.A.A.10B.9C.8D.7

5.一个科研小组共有8名科研人员,其中有3名女性.从中选出3人参加学术讨论会,选出的人必须有男有女,则有不同选法()A.56种B.45种C.10种D.6种

6.设集合M={X∈R|X≤-1},集合N={∈R|Z≥-3},则集合MnN=()

A.{X∈RB.一3≤X≤-1}C.{Z∈RD.Z≤-1}E.{X∈RF.X≥一3}G.φ

7.A.A.

B.

C.

D.

8.

9.下列函数为奇函数的是()。

10.某人打靶的命中率为0.8,现射击5次,那么恰有两次击中的概率为()A.A.

B.

C.

D.

11.

12.函数的定义域是()A.[-2,2]B.[-2,2)C.(-2,2]D.(-2,2)

13.

在一张纸上有5个白色的点,7个红色的点,其中没有3个点在同一条直线上,由不同颜色的两个点所连直线的条数为()

A.

B.

C.

D.

14.

15.

16.

17.不等式1<|3x+4|≤5的解集为()A.-3<x<-5/3或-1<x<1/3

B.x≥-3

C.-3≤x<-5/3或-1≤x≤1/3

D.-3≤x<-5/3或-1<x≤1/3

18.

19.

20.

21.

22.

()A.A.-21B.21C.-30D.3023.已知拋物线y2=6x的焦点为F,点A(0,-1),则直线AF的斜率为()。A.

B.

C.

D.

24.函数y=6sinxcosx的最大值为()。

A.1B.2C.6D.325.α∈(0,π/2),sinα,α,tanα的大小顺序是()A.tanα>sinα>αB.tanα>α>sinαC.α>tanα>sinαD.sinα>tanα>α26.设角a=3,则()A.A.sinα>-0,cosα>0

B.sinα<0,cosα>O

C.sinα>0,cosα<0

D.sinα<0,cosα<0

27.函数y=2sin6x的最小正周期为()。

28.从点M(x,3)向圆(x+2)2+(y+2)2=1作切线,切线长的最小值等于()

A.4

B.

C.5

D.

29.某学生从7门课程中选修4门,其中甲、乙、丙三门课程至少选修两门,则不同的选课方案共有()A.A.4种B.18种C.22种D.26种30.有4名男生和2名女生,从中随机抽取三名学生参加某项活动,其中既有男生又有女生的概率是()A.A.1/3B.1/2C.3/5D.4/5二、填空题(20题)31.

32.某同学每次投篮命中的概率都是0.6,各次是否投中相互独立,则该同学投篮3次恰有2次投中的概率是______。

33.

34.椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6=0与两坐标轴的交点,则此椭圆的标准方程为__________.

35.从新一届的中国女子排球队中随机选出5名队员,其身高分别为(单位:cm)

196,189,193,190,183,175,

则身高的样本方差为_________cm2(精确到0.1cm2).

36.一个圆柱的底面半径和高都与一个球的直径相等,则该圆柱与该球的体积的比为________

37.已知1<x2+y2≤2,x2-xy+y2的值域为________.

38.

39.函数f(x)=x2-2x+1在x=l处的导数为______。

40.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的2倍,则m的值是__________.

41.从-个正方体中截去四个三棱锥,得-正三棱锥ABCD,正三棱锥的体积是正方体体积的_________.

42.函数y=x2-6x+10的图像的单调递增区间为(考前押题2)

43.函数y=sinx+cosx的导数yˊ__________.

44.方程Ax2+Ay2+Dx+Ey+F=0(A≠0)满足条件(D/2A)2+(E/2A)2-F/A=0,它的图像是__________.

45.已知|a|=2,|b|=4,|a+b|=3,则<a,b>=

46.

47.已知球的球面积为16n,则此球的体积为_________.

48.

49.函数的图像与坐标轴的交点共有______个.

50.函数的定义域是____________.

三、简答题(10题)51.(本小题满分12分)

52.

(本小题满分13分)

53.

(本小题满分12分)

54.

(本小题满分13分)

55.

(本小题满分12分)

56.(本小题满分12分)

设一次函数f(x)满足条件2/(1)+3f(2)=3且2/(-1)-f(0)=一1,求f(x)的解析式.

57.(本小题满分12分)

58.(本小题满分13分)

从地面上A点处测山顶的仰角为α,沿A至山底直线前行α米到B点处,又测得山顶的仰角为β,求山高.

59.

(本小题满分12分)

已知等比数列{αn}的各项都是正数,α1=2,前3项和为14.

(1)求{αn}的通项公式;

(2)设bn=log2αn,求数列{bn}的前20项的和.

60.

(本小题满分12分)

四、解答题(10题)61.

62.

63.(Ⅰ)求E的离心率;(Ⅱ)若E的焦距为2,求其方程.64.从椭圆上x2+2y2=2的右焦点引-条倾斜45°的直线,以这条直线与椭圆的两个交点P、Q及椭圆中心0为顶点,组成△OPQ.(Ⅰ)求△OPQ的周长;(Ⅱ)求△OPQ的面积.

65.某工厂每月生产x台游戏机的收入为R(x)=-4/9x2+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?

66.

67.甲、乙二人各射击一次,若甲击中目标的概率为0.8,乙击中目标的概率为0.6.试计算:(I)二人都击中目标的概率;(Ⅱ)恰有一人击中目标的概率;(Ⅲ)最多有一人击中目标的概率.68.

69.

70.在△ABC中,已知B=75°,(Ⅰ)求cosA;(Ⅱ)若BC=3,求AB.

五、单选题(2题)71.抛物线y=2px2的准线方程是()A.A.x=-p/2B.y=-p/2C.x=-1/8pD.y=-1/8p

72.A.18B.28C.30D.36六、单选题(1题)73.设函数f(x)=ex,则f(x-a)·f(x+a)=()A.A.f(x2-a2)

B.2f(x)

C.f(x2)

D.f2(x)

参考答案

1.B

2.D

3.Bα∩β=a,b丄β,∵b丄a,又∵a包含于α,∴由三垂线定理的逆定理知,b在α内的射影b’丄a

4.B

5.B由题意,共有3女5男,按要求可选的情况有:1女2男,2女1男,故本题是组合应用题.考生应分清本题无顺序要求,两种情况的计算结果用加法(分类用加法).

6.A

7.A

8.D

9.D该小题主要考查的知识点为函数的奇偶性.【考试指导】f(x)=sinx=-sin(-x)=-f(-x),所以Y=sinx为奇函数.

10.C

11.D

12.C

13.C

14.D

15.B

16.D

17.D

18.D

19.C

20.A

21.C

22.B

23.D本题考查了抛物线的焦点的知识点。抛物线:y2=6x的焦点为F(,0),则直线AF的斜率为。

24.D该小题主要考查的知识点为函数的最大值.【考试指导】=6sinxcosx=3sin2x,当sin2x=1时y取最大值3.

25.B

26.C

27.B该小题主要考查的知识点为函数的最小正周期.【考试指导】函数y=2sin6z的最小正周期为T=

28.B如图,相切是直线与圆的位置关系中的-种,此题利用圆心坐标、半径,求出切线长.由圆的方程知,圆心为B(-2,-2),半径为1,设切点为A,△AMB为Rt△,由勾股定理得,MA2=MB2-l2=(x+2)2+(3+2)2-l2=(x+2)2+24,MA=当x+2=0时,MA取最小值,最小值为

29.C

30.D6名中只有2名女生,抽取3名学生,同性的只能是男生,

31.

32.0.432投篮3次恰有2次投中的概率为C32·0.62·0.4=0.432.

33.

34.答案:原直线方程可化为交点(6,0)(0,2)当(6,0)是椭圆一个焦点,点(0,2)是椭圆一个顶点时,

35.

36.

37.[1/2,3]

38.

39.0f’(x)=(x2-2x+1)’=2x-2,故f’(1)=2×1-2=0.

40.答案:本题考查椭圆的标准方程及其几何性质.对于椭圆标准方程而言,应注意:

41.1/3截去的四个三棱锥的体积相等,其中任-个三棱雉都是底面为直角三角形,且直角边长与这个三棱锥的高相等,都等于正方体的棱长.设正方体的棱长为a,则截去的-个三棱锥的体积为1/3×1/2a×a×a=1/6a3,故(a3-4×1/6a3)/a3=1/342.答案:[3,+∞)解析:

43.

【考点指要】本题考查导数知识.函数和的导数等于导数的和.

44.

45.

46.

47.

48.

49.【答案】2【解析】该小题主要考查的知识点为函数图像与坐标轴的交点.【考试指导】

50.{x|-2<x≤-1,且x≠-3/2}

51.解

52.

53.

54.

55.

56.

57.

58.解

5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论